eBangor

Groundwater fluxes and flow paths within coastal barriers: Observations from a large-scale laboratory experiment (BARDEX II)

Turner, I.L. and Rau, G.C. and Austin, M.J. and Andersen, M.S. (2015) Groundwater fluxes and flow paths within coastal barriers: Observations from a large-scale laboratory experiment (BARDEX II). Coastal Engineering. DOI: 10.1016/j.coastaleng.2015.08.004 (In Press)

[img]
Preview
Text
33578.pdf - Accepted Version

Download (1MB) | Preview

Abstract

The dynamics of groundwater at the beach face land�ocean boundary have important implications to the exchange of water, nutrients, and pollutants between the ocean and coastal aquifers, and more subtly, varying groundwater levels may induce differing morphological response at the beach face. As a component of the multi-institution Barrier Dynamics Experiment (BARDEX II), groundwater fluxes and flow paths within a prototype-scale sandy barrier are quantified and reported at the three fundamental spatio-temporal scales (individual waves, the beach face, and total barrier), under controlled wave and water level conditions. A particular feature of the experimental programme was the inclusion of a back-barrier �lagoon�, that via a pump system and an intermediate water reservoir enabled the forcing of contrasting hydraulic gradients across the barrier. It was observed that the groundwater level, flow paths, and fluxes within the beach face region of the sand barrier were predominantly controlled by the action of waves at the beach face, regardless of the overall seaward- or landward-directed barrier-scale hydraulic gradients. In the presence of waves, all tests undertaken to complete this study developed a seaward gradient in this zone under the influence of waves. As a further result of wave forcing at the beach face boundary, localised groundwater flow divides were observed to develop, further partitioning the circulation and flow paths of groundwater within the prototype-scale sand barrier.

Item Type: Article
Subjects: Research Publications
Departments: College of Natural Sciences > School of Ocean Sciences
Date Deposited: 09 Oct 2015 02:31
Last Modified: 16 Sep 2017 02:45
ISSN: 0378-3839
URI: http://e.bangor.ac.uk/id/eprint/5580
Identification Number: DOI: 10.1016/j.coastaleng.2015.08.004
Publisher: Elsevier
Administer Item Administer Item

eBangor is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.