The use of biogeochemical tags to determine the origins and movement patterns of fishes

A thesis presented for the Degree of Doctor of Philosophy at
Bangor University

Andrew Lewis Marriott
November 2013

School of Ocean Sciences
Bangor University

Funding for the research was provided by the Natural Environment Research Council (NERC) and the Centre for Environment, Fisheries and Aquaculture Science (Cefas: CASE Partner)
Declaration and Consent

Details of the Work

I hereby agree to deposit the following item in the digital repository maintained by Bangor University and/or in any other repository authorized for use by Bangor University.

Author Name: Andrew Lewis Marriott.

Title: The use of biogeochemical tags to determine the origins and movement patterns of fishes

Supervisor/Department: Dr. I. D. McCarthy. School of Ocean Sciences.

Funding body (if any): Natural Environment Research Council.

Qualification/Degree obtained: ...

This item is a product of my own research endeavours and is covered by the agreement below in which the item is referred to as “the Work”. It is identical in content to that deposited in the Library, subject to point 4 below.

Non-exclusive Rights

Rights granted to the digital repository through this agreement are entirely non-exclusive. I am free to publish the Work in its present version or future versions elsewhere.

I agree that Bangor University may electronically store, copy or translate the Work to any approved medium or format for the purpose of future preservation and accessibility. Bangor University is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited.

Bangor University Digital Repository

I understand that work deposited in the digital repository will be accessible to a wide variety of people and institutions, including automated agents and search engines via the World Wide Web.

I understand that once the Work is deposited, the item and its metadata may be incorporated into public access catalogues or services, national databases of electronic theses and dissertations such as the British Library's EThOS or any service provided by the National Library of Wales.

I understand that the Work may be made available via the National Library of Wales Online Electronic Theses Service under the declared terms and conditions of use (http://www.llgc.org.uk/index.php?id=4676). I agree that as part of this service the National Library of Wales may electronically store, copy or convert the Work to any approved medium or format for the purpose of future preservation and accessibility. The National Library of Wales is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited.
Statement 1:

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree unless as agreed by the University for approved dual awards.

Signed .. (candidate)

Date ...

Statement 2:

This thesis is the result of my own investigations, except where otherwise stated. Where correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s).

All other sources are acknowledged by footnotes and/or a bibliography.

Signed .. (candidate)

Date ...

Statement 3:

I hereby give consent for my thesis, if accepted, to be available for photocopying, for inter-library loan and for electronic storage (subject to any constraints as defined in statement 4), and for the title and summary to be made available to outside organisations.

Signed .. (candidate)

Date ...
Statement 4:

a) I agree to deposit an electronic copy of my thesis (the Work) in the Bangor University (BU) Institutional Digital Repository, the British Library ETHOS system, and/or in any other repository authorized for use by Bangor University and where necessary have gained the required permissions for the use of third party material.

In addition to the above I also agree to the following:

1. That I am the author or have the authority of the author(s) to make this agreement and do hereby give Bangor University the right to make available the Work in the way described above.

2. That the electronic copy of the Work deposited in the digital repository and covered by this agreement, is identical in content to the paper copy of the Work deposited in the Bangor University Library, subject to point 4 below.

3. That I have exercised reasonable care to ensure that the Work is original and, to the best of my knowledge, does not breach any laws – including those relating to defamation, libel and copyright.

4. That I have, in instances where the intellectual property of other authors or copyright holders is included in the Work, and where appropriate, gained explicit permission for the inclusion of that material in the Work, and in the electronic form of the Work as accessed through the open access digital repository, or that I have identified and removed that material for which adequate and appropriate permission has not been obtained and which will be inaccessible via the digital repository.

5. That Bangor University does not hold any obligation to take legal action on behalf of the Depositor, or other rights holders, in the event of a breach of intellectual property rights, or any other right, in the material deposited.

6. That I will indemnify and keep indemnified Bangor University and the National Library of Wales from and against any loss, liability, claim or damage, including without limitation any related legal fees and court costs (on a full indemnity bases), related to any breach by myself of any term of this agreement.

Signature: ... Date: ...
Abstract

The incorporation of both trace and minor-trace elements within the otolith aragonite matrix of hatchery reared sea bass *Dicentrarchus labrax* and the possible effects of *post mortem* handling, transportation and the period of time whole fish were stored frozen were examined. Furthermore, the possible effects of temporal variability of the water chemistry within two nursery grounds and the effect on the elemental concentrations within otoliths were measured. Finally, the use of naturally occurring trace and minor-trace elements incorporated within the otolith structures of teleost fish and their use as natural biogeochemical tags to infer movement patterns over spatial scales were assessed.

Statistically significant differences were observed in the concentrations of Mg and K measured in the otoliths of hatchery reared *Dicentrarchus labrax* when whole fish were stored frozen for a period of 6 months. Similarly, the elemental concentrations of Mn differed significantly between the storage periods of 1 day and 12 months. Three elements Na, Sr and Ba indicated no significant change in their elemental concentrations in response to the methods of dispatch, transportation protocol and freezer storage period. Based on the concentrations of Na, Sr and Ba, indications show these three elements are not subject to alteration when using the most commonly used methods of euthanasia / transportation and storage duration for *D. labrax*.

Significant inter-annual and intra-annual differences were observed in the elemental concentrations of otoliths from juvenile *Pleuronectes platessa* sampled over a period of 7 years (2004-2010) from two nursery grounds Llanfairfechan and Llandonna in North Wales. Inter-annual (between years) variation at the site Llanfairfechan was observed for Mg in each of the 3 years 2007-2010, similarly between the 2 years 2009-2010 and the concentrations of Na. Differences were also observed in the concentrations of Sr and between each of the 5 years 2005-2010. Inter-annual variation was observed at the site Llanfairfechan for Na between each of the 3 years 2007-2010, between the 2 years 2007-2010 for K, and between the two years 2007-2009 and 2009-2010 for Sr and Ba respectively. Some degree of temporal stability could be observed for Na, Mg and Ba at Llanfairfechan and for Na, K, Sr and Ba within the site at Llandonna over short time scales (*i.e.* 2-3 year periods), increasing to 4 years (2004-2007) for Na and Ba at Llanfairfechan and K and Ba at Llanddona. There appeared to be some temporal stability on an inter-
annual scale over a short term: *i.e.* 2-3 years, with some elements such as Ba being more stable for a period up to 4 years.

Significant differences in the elemental concentrations of Mg, Mn, Sr and Ba were observed in the otoliths of *Salmo trutta* parr sampled from each of 36 main sea trout producing rivers in SW Scotland, NW England, Wales, Isle of Man and the east coast of Ireland which flow into the Irish and Celtic Seas. Using quadratic discriminant function analysis (QDFA), 74% of juvenile trout parr were classified back to their natal rivers, with 66% of trout parr correctly classified to region. Using the elements Mg, Mn, Sr and Ba from trout parr otoliths a freshwater biogeochemical baseline was produced to assign “blind” run parr samples to their source, with 27/39 (69%) of “blind” run trout parr correctly classified back to their natal river. Using the biogeochemical freshwater baseline created from the QDFA adult sea trout of unknown origin were assigned to their putative natal region using their period of freshwater residency. Classification was low with > 20% of adults correctly assigned to their putative region of origin. Although classification accuracy of trout parr to river / region was high and indicated the freshwater baseline was robust, the results for the present study suggest that the poor classification of adults to their putative natal region may indicate migratory patterns for adult sea trout within the Irish Sea are more extensive than previously understood.
Acknowledgements

To even begin to thank all of those who in some part were involved or indeed assisted with the creation of this thesis would be an impossible task. So I will thank all of those who I may have forgotten over the last 4 years in advance. Thank you.

Firstly, I would like to thank my project supervisors Dr. I. D. McCarthy and Prof. C. A. Richardson (S.O.S. Bangor University), Dr. S. R. N. Chenery (B.G.S. Nottingham) and Dr M. Armstrong (CEFAS; Case partner) for all their encouragement and helpful advice on the project during the long meetings over copious amounts of coffee, tea and cake. I would also like to thank the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and The Natural Environment Research Council (NERC) who kindly funded this research project.

I would particularly like to thank Ian for his helpful comments on the early stages of the project and on earlier drafts of my thesis and his support and direction when the initial ideas for the project failed to materialise. I would also like to say a special thank you to Simon, who took time out of his busy schedule to explain the fundamentals of microchemistry, the use of the LA and sb-ICP-MS and how to interpret the results over the long weekends we had at the B.G.S. Thanks for the coffee.

I would also like to thank the team at the Environment Agency (EA), Walli Hanks, Pierino Algieri, Richard Prichard, Richard Pierce and Gethyn Morris in assisting in the attempt to collect sea bass for the failed early part of my thesis. I would also like to thank The Celtic Sea trout Project (C.S.T.P.) who, with the direction and supervision of Ian McCarthy allowed me to take on part of the microchemistry work as a filler for my research project when all seemed lost. Thanks must also go to the Ireland Wales Territorial Co-operation Programme 2007-2013 (INTERREG 4A) for funding the C.S.T.P. project. My thanks also go to Dr Clive Truman and Dr Matt Cooper at the National Oceanographic Centre, Southampton (N.O.C.S) for their help and advice during sample analysis at the N.O.C.S.

I wish to also like to thank all the technical staff here at the School of Ocean Sciences and especially Joan Griffiths, Lynne Roberts, Gwyn Hughes, Ian Prichard, Gwynne Jones and Vallan Astley for making me feel at home and smile when all seemed lost, Diolch yn fawr. Special thanks must go to “my partner in crime” Berwyn Roberts for assisting me in the
long days and even longer nights in sample collection around the cold coastal waters of North Wales. Dry suits should not be worn as an alternative to a floatation suite “This way up!”

A special thank you must go out to all of my friends, colleagues and staff here at the School of Ocean Sciences. I would also like to thank Alice Ramsay for her invaluable assistance in the early parts of my research and of course John Latchford and Cara Hughes for assistance in the queries I had regarding statistics Beers on Me! I would especially like to thank Michael Watts for allowing me to reside for long hours and weekends in the office and the laboratory at the B.G.S. while I was running my samples. I would also like to express my thanks to the staff and my work colleagues at the B.G.S. for their invaluable help and for making me feel at home and part of the team.

Thanks must also go to all my friends here in Menai Bridge who over the last 4 years made me feel welcome and at home: Maldwyn Jones and Lynne Roberts for trying to get me to go out when I was lost in my own little world. Mark Prest both Hefin Rowlands and Hefin Jones, Little Rita, Mark Rees, Pete Warder, Ian Evans for making evenings out very entertaining and to the rest of the Bulkeley Arms “cheers”. I would also like to say a special thank you of course to my long suffering house mates (past and present) but especially to Adam Fetherstonhaugh, Claire Catherall, Vicki Greenhalgh, Claudia Tanneberger and Lauren D'Alessandro-Heath who ALL took time out to listen to my endless conversations about *Fisheries Science* and kept me sane during the long hours I locked myself away. I would also like to extend my thanks to my family and my friends back home in the Midlands who never doubted my ability even when I did.

Last, but by no means least, I would like to thank Ruth Jones. You are one of the most unselﬁsh people I have ever had the pleasure of knowing. Your ‘You can do it’ attitude and endless encouragement when my spirits were low throughout my 4 years of study here at Bangor were inspiring. A true friend and Soul Mate. Thank You.
To my Mother

You were always by my side in mind and now in spirit
You always believed in me no matter what direction I took
I have now finally achieved my dream
I wish you were here to see it
Thank You
Thesis Contents

Abstract

Acknowledgments

Dedication

Thesis Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aims of research for the Thesis</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>The effects of anaesthesia, transportation and storage on otolith microchemistry in juvenile European sea bass (Dicentrarchus labrax L.)</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Temporal stability of a nursery-specific chemical tag in the otoliths of juvenile plaice (Pleuronectes platessa L.)</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>The use of biogeochemical tags to infer movement patterns of adult sea trout and juvenile brown trout (Salmo trutta L.) parr.</td>
<td>124</td>
</tr>
<tr>
<td>5</td>
<td>Discussion.</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Bibliography.</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>260</td>
</tr>
<tr>
<td>A</td>
<td>Methods for equipment preparation (acid cleansing) and otolith extraction.</td>
<td>261</td>
</tr>
<tr>
<td>B</td>
<td>Anaesthetics used for dispatching fish at Bluewater fish farm.</td>
<td>266</td>
</tr>
<tr>
<td>C</td>
<td>Techniques used to identify and adjust outliers observed in the analytical data (Grubbs and Winsorisation).</td>
<td>267</td>
</tr>
</tbody>
</table>