THERMOREGULATION AND MUCOSAL IMMUNITY: THE EFFECTS OF ENVIRONMENTAL EXTREMES

By

JENNIFER L. BRIERLEY

A thesis submitted to

Bangor University

In fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Sport, Health and Exercise Sciences
Bangor University
March 2013
Summary

The main objectives of this thesis were to: 1. investigate the effects of acute and chronic hypoxia on human thermoregulation and mucosal immunity, specifically salivary immunoglobulin A (s-IgA) and salivary alpha-amylose during mild cold exposure at rest (Chapter 4 and 5), 2. identify the effectiveness of four practical field re-warming methods for the field treatment of cold casualties on thermoregulation and metabolism (Chapter 6), 3. examine the s-IgA response during and following mild hypothermia (Chapter 7) and 4. determine the efficacy of three field protection methods for the prevention of heat loss in non-shivering cold casualties using an in vitro torso model exposed to -18.5°C, 0°C and 18.5°C for four hours (Chapter 8).

Two hours of exposure to a simulated high altitude of 4000m, regardless of hypoxic acclimatisation, did not alter core or mean skin temperature during cold exposure. Nonetheless, hypoxia reduced metabolic heat production which may cause thermoregulatory implications during longer bouts of cold exposure. Chronic hypoxia reduced thermal sensitivity to the cold which may lead individuals to neglect appropriate behavioural thermoregulation and increase the risk of local and whole body cold injuries. Given s-IgA responses were unaffected by hypoxia in the cold before and following the 18 day mountaineering expedition suggests individuals are not at risk from URTI upon arrival to altitude.

During a three hour ‘awaiting rescue’ scenario following cold water immersion to reduce core temperature, a triple layered, metallised survival product with cells to trap heat and self-activating chemical heat pads was more superior at re-warming cold individuals compared to other methods tested. The insulative attribute of this survival bag may reduce possible shivering-induced fatigue and the subsequent increase in heat loss during more prolonged periods of cold exposure (> 4 hours).

A reduction in core temperature (≥ 1.5°C) resulting from cold water immersion and subsequent cold air exposure suppressed the usual daily s-IgA response which may increase susceptibility to illness and infection (i.e. URTI, common colds, influenza) if re-warming is not initiated immediately.

A non-shivering, in vitro torso model demonstrated that a triple-layered, metallised survival product with cells to trap heat and self-activating chemical heat pads was the most superior of three field cold protection methods to reduce heat loss during exposure to a variety of ambient temperatures (-18.5°C, 0°C and 18.5°C) for four hours.

It would appear when individuals experience cold stress at sea level or altitude, a triple-layered, metallised survival product with cells to trap heat and self-activating chemical heat pads may be the optimal light-weight field treatment to counteract the potential onset of hypothermia. For non-shivering casualties, this survival product may greatly reduce heat loss creating a longer survival time while waiting for evacuation to superior medical treatments (e.g. hospitals).

The overall aim of this thesis was to clarify the immediate health risks for individuals exposed to the extreme environments of cold and/or hypoxia, and if simple countermeasures which can be easily administered, offer suitable protection in the field to reduce such risks. The key message of this thesis is that individuals exposing themselves to cold and/or hypoxia when un-acclimatised to such conditions should carry self-administering survival bags and follow a specific programme of monitoring thermoregulation and upper respiratory symptoms in order to remain free of illness (e.g. rhinovirus, bronchitis) and peripheral or central cold injury (e.g. hypothermia and frostbite).
Declaration

This work has not been previously accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed…………………………………………………… (candidate)

Date…………………………………………………………

Statement One

This thesis is the product of my own investigations, except where otherwise stated. Other sources are acknowledged giving explicit references.

Signed…………………………………………………… (candidate)

Date…………………………………………………………

Statement Two

I hereby consent for my thesis, if accepted, to be available for photocopying and for interlibrary loan, and for the title and summary to be made available to outside organisations.

Signed…………………………………………………… (candidate)

Date…………………………………………………………
Acknowledgements

Firstly, I must gratefully thank my supervisor, Dr Sam Oliver for giving me the opportunity to work with him and for his support and guidance throughout my time as a PhD student. In particular, I would like to thank Sam for his friendly and understanding nature, as well as for providing me with his time and effort to help me improve as a researcher. Secondly, thanks must go to Derek Ryden for providing me and Bangor University the fantastic opportunity to carry out research on behalf of a worldwide company; it has been a real pleasure. I would also like to make a special acknowledgement of the support and friendships from Justin Lawley and Alberto Dolci who I had the pleasure to work with during many hours of data collection and analysis. Kevin Williams and Jason Edwards will never understand just how much they have been appreciated throughout my time at Bangor University. I cannot thank you enough for your continual technical assistance and friendly support. Thank you to all the BSc and MSc students for your assistance with data collection, whether pilot, preliminary or main experimental testing (Jill Reinsch, Carla Gallagher, Oliver Ruffle, Bethan Palmer, James Firman, Robin Wilson, Aaron Burdett, Rob Hutchinson, Martyn Middleton and Ben Cook), you made my experience so very enjoyable and thank you to all the participants who took part in the studies with such enthusiasm despite the conditions they were put under! I must also thank Dr Neil Walsh and Dr Jeanette Thom for their guidance and input in the development of my PhD in thesis committee meetings. There are so many special people who have played a role in my time as a PhD student and though their names may not appear here they will always be in my thoughts. My most sincere thanks of all must go to my family (Mum, Dad, David, B, Tim, Matthew, Claire, Michelle, Sarah, Melissa, Kathryn, Bethany and James) and extended family (Chelsey Dempsey BSc MSc 123 MP3, Lady Claire Shelmerdine, Kat Richardson and Rob Samuel). You have never stopped believing in me throughout my student career and your support has been relentless. There is no way I would be the person I am without you. And finally... my new husband Stew. Here’s to the next chapter xxx
Publications

I was involved in all aspects of protocol design, data collection, data analyses and preparation of manuscripts for publication and the following thesis chapters. However, I also gratefully acknowledge input from the other named authors for each publication. The following is a list of publications arising from the material presented in this thesis.

Full papers

Abstracts

Table of Contents

Summary II
Declaration III
Acknowledgments IV
Publications V
Table of contents VI
Thesis format XI
List of tables X
List of figures XIV
List of abbreviations XVIII

Chapter One
General introduction
Thesis objectives 3

Chapter Two
Literature review

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ill health in cold/hypoxic environments</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Hypothermia</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Peripheral cold injury</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Upper respiratory tract infections (URTI)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Thermoregulation in cold</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Behavioural responses</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Physiological responses – Heat balance</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Physiological responses – Heat production</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Thermoregulation in hypoxia</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Behavioural responses</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Physiological responses – Heat balance</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Physiological responses – Heat production</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The Immune system</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Innate immunity - External barriers against infection</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Innate immunity – Phagocytosis</td>
<td>16</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Innate immunity - Soluble chemical factors</td>
<td>17</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Specific acquired immunity – Antibody</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Mucosal immunity</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Immune system in cold and hypoxia</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Cold and immune system</td>
<td>20</td>
</tr>
</tbody>
</table>
Chapter Three

General Methods

3.1 Ethical approval 39
3.2 Anthropometry and body composition 39
3.3 Experimental procedures 40
3.4 Thermoregulatory measures 40
3.5 Sample collection and analysis 40
3.5.1 Saliva 41
3.5.2 Urine 42
3.6 Calculations 42
3.7 Statistical analysis 43

Chapter Four

Thermal Comfort and Thermoregulatory Responses to Cold Exposure in Hypoxia before and after an Altitude Stay

4.1 Abstract 44
4.2 Introduction 45
4.3 Method 48
4.3.1 Participants 48
4.3.2 Study design 48
4.3.3 Experimental procedures 48
4.3.4 Experimental trials 49
4.3.5 Statistical analysis 50
4.4 Results 51
4.4.1 Environmental chamber conditions, hydration status, body mass and composition

4.4.2 Core and skin temperature responses

4.4.3 Metabolic responses

4.4.4 Observed shivering activity and EMG

4.4.5 Thermal comfort and pain sensation

4.4.6 Heart rate and Arterial oxygen saturation

4.4.7 Results summary

4.5 Discussion

Chapter Five Hypoxia and cold effects on Mucosal Immunity before and after an altitude stay

5.1 Abstract

5.2 Introduction

5.3 Method

5.3.1 Participants

5.3.2 Preliminary measurements

5.3.3 Experimental Trials

5.3.4 Saliva collection and analysis

5.3.5 Statistical analysis

5.4 Results

5.4.1 Thermoregulatory and Metabolic responses

5.4.2 Heart rate and Arterial oxygen saturation

5.4.3 Saliva IgA and amylase responses

5.4.4 Results summary

5.5 Discussion

Chapter Six Practical Field Methods for the Pre-hospital Management of Hypothermia: Shivering Cold Casualties

6.1 Abstract

6.2 Introduction

6.3 Methods

6.3.1 Participants

6.3.2 Study design
Chapter Nine General discussions

9.1 Background 127
9.2 Summary of main findings 128
9.3 Thermoregulation, metabolism and perception 129
9.4 Mucosal immunity: Saliva flow rate, s-IgA responses and \(\alpha \)-amylase responses 133
9.5 Future directions 136
9.6 Conclusions 137

References 139

Appendices
A Subject information sheets 182
B Informed consent form 187
C Medical Questionnaire 190
D McGinnis Thermal Comfort Scale 196
E Centimax 100 197
F Observed shivering scale 198
G Pain sensation scale 199
H Wisconsin Upper Respiratory Symptom Survey 200
I A cross-sectional study examining human thermoregulation during survival bag treatment in the cold 201
J The effect of chemical heat pads on skin temperature in 10°C, 20°C and 30°C 203
Thesis Format

A literature review (Chapter 2) provides a brief background and proposes the broad aims of the research presented in the thesis. A general methods chapter follows to outline the common procedures and analyses performed in the subsequent experimental studies (Chapter 3). The thesis consists of three independent experimental studies. The first study investigates the effects of acute and chronic hypoxia on thermoregulation, thermal sensitivity and mucosal immunity (s-IgA) during mild cold exposure (Chapter 4 and 5). The second experimental study is also divided into two chapters which investigate the effects of practical field re-warming methods for the treatment of shivering cold casualties upon thermoregulation, metabolism and muscosal immunity (Chapter 6 and 7). The third experimental study considers the efficiency of these field protection methods to reduce the rate of heat loss in non-shivering cold casualties (Chapter 8). A general discussion (Chapter 9) contains a summary and critical analysis of the main findings of the research programme, highlighting potential areas for future research. As all chapters are linked, at times there is necessary overlap between chapters. Throughout the thesis abbreviations are defined at first use. For clarity a list of abbreviations, tables and figures appears prior to Chapter 1. Bold type is used when referral is required to sections elsewhere in the thesis.
List of Tables

Table 2.1 Signs, symptoms and physiological changes associated with progressive hypothermia.

Table 2.2 A summary of studies investigating the effect of cold and hypoxia on thermoregulation in un-acclimatised men.

Table 2.3 A summary of studies investigating the effects of cold exposure on mucosal immunity.

Table 2.4 A summary of studies investigating the efficacy of field interventions for the treatment of individuals in the cold.

Table 4.1 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on individual skin temperature sites.

Table 4.2 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on the respiratory exchange ratio.

Table 4.3 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on fingernail and toenail temperature.

Table 4.4 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on heart rate and arterial oxygen saturation.

Table 5.1 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on rectal temperature, mean weighted skin temperature, metabolic heat production and respiratory exchange ratio.
Table 6.1 Resting core temperature immediately prior to cold water immersion and time taken to reach 36°C during the cold water immersion.

Table 6.2 A summary of re-warming parameters.

Table 7.1 Resting core temperature immediately prior to cold water immersion and time taken to reach 36°C during the cold water immersion.

Table 7.2 Summary of thermoregulatory parameters.

Table 8.1 Time to 24°C from 32°C during a 240 minute exposure to 0°C and -18.5°C.
List of Figures

Figure 4.1 Mean daily altitude of participants during an Alpine expedition. 50

Figure 4.2 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on T_{rec}. 52

Figure 4.3 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on mean skin temperature. 52

Figure 4.4 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on metabolic heat production. 55

Figure 4.5 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on carbohydrate and lipid oxidation. 56

Figure 4.6 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on observed shivering activity. 57

Figure 4.7 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on EMG activity. 57

Figure 4.8 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on thermal comfort. 58

Figure 4.9 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level and at 4000m before and after acclimatisation on perceived central coldness and Perceived peripheral coldness. 59

Figure 5.1 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level, 4000m before and after acclimatisation and during a thermo-neutral control on saliva flow rate, s-IgA concentration and s-IgA secretion rate. 74
Figure 5.2 The effect of 120 min cold air test (15°C) in un-acclimatised participants at sea level, 4000m before and after acclimatisation and during a thermo-neutral control on α-amylase concentration and secretion rate.

Figure 6.1 The effect of 180 minute cold air test (0°C) on core temperature in four field cold casualty interventions and a thermo-neutral control.

Figure 6.2 The effect of 180 minute cold air test (0°C) on mean weighted skin temperature in four field cold casualty and a thermo-neutral control.

Figure 6.3 The effect of 180 minute cold air test (0°C) on metabolic heat production in four field cold casualty interventions and a thermo-neutral control.

Figure 6.4 The effect of 180 minute cold air test (0°C) on substrate oxidation in four field cold casualty interventions and a thermo-neutral control.

Figure 6.5 The effect of 180 minute cold air test (0°C) on energy expenditure in four field cold casualty interventions and a thermo-neutral control.

Figure 6.6 The effect of 180 minute cold air test (0°C) on thermal comfort in four field cold casualty interventions and a thermo-neutral control.

Figure 6.7 The effect of 180 minute cold air test (0°C) on pain sensation in four field cold casualty interventions and a thermo-neutral control.

Figure 7.1. The effect of a 180 min cold air test (0°C) on saliva flow rate, S-IgA concentration and S-IgA secretion rate compared to a thermo-neutral control.

Figure 7.2. The effect of a 180 min cold air test (0°C) on saliva alpha amylase concentration and saliva alpha amylase secretion rate compared to a thermo-neutral control.

Figure 8.1. The effect of a 240 minute cold air test and thermo-neutral air test on core temperature in three field cold casualty interventions and an untreated control.
Figure 8.2 Hourly change in core temperature during 240 minute exposure to A, 18.5°C, B, 0°C and C, -18.5°C in three field cold casualty interventions and an untreated control.

Figure A.1. The effect of a 120 minute cold air test on core temperature in two field cold protection interventions.

Figure A.2. The effect of chemical heat pads on skin temperature during exposure to 10°C, 20°C and 30°C.
List of Abbreviations

\(\alpha\)
Alpha

\(\degree C\)
Degrees Celsius

\(\degree C/h\)
Degrees Celsius per hour

\(\mu mol\)
Micromole

ANOVA
Analysis of Variance

ATP
Adenosine Triphosphate

BAT
Brown Adipose Tissue

BB
Blizzard Bag

BB+HP
Blizzard Bag with Heat Pads

BIA
Bio-electrical Impedance Analysis

BMR
Basal Metabolic Rate

CAT
Cold Air Test

CHO
Carbohydrate

CIVD
Cold Induced Vasodilation

\(cm\)
Centimetre

CNS
Central Nervous System

CO
Cardiac Output

CON
Control Trial

CV
Co-efficient of Variation

ELISA
Enzyme-Linked Immunosorbent Assay

EMG
Electromyography

FFA
Free Fatty acid

FFM
Fat Free Mass

\(FIO_2\)
Fraction of Inspired Oxygen
Ft Feet
g Gram
g·ml⁻¹ Grams per millilitre
h hour
Hb Haemoglobin
HR Heart Rate
HSD Honestly Significant Difference
IgA Immunoglobulin-A
IgG Immunoglobulin-G
IgM Immunoglobulin-M
Kg Kilogram
kJ Kilojoule
L Litre
m Metre
M Metabolic Heat Production
MAP Mean Arterial Pressure
Min Minute
mg Milligram
MJ⁻¹ Per Millijoule
mL Millilitre
ml·kg⁻¹ Millilitres per kilogram
mmol Millimole
mOsmol Milliosmole
MPS Metalized plastic sheeting
MR Metabolic Rate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_b</td>
<td>Body temperature</td>
</tr>
<tr>
<td>UN</td>
<td>Un-acclimatised</td>
</tr>
<tr>
<td>URS</td>
<td>Upper respiratory symptoms</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper Respiratory Tract Infection</td>
</tr>
<tr>
<td>V_E</td>
<td>Ventilation</td>
</tr>
<tr>
<td>VCO_2</td>
<td>Carbon Dioxide Production</td>
</tr>
<tr>
<td>VO_2</td>
<td>Oxygen consumption</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>$\text{W} \cdot \text{m}^{-2}$</td>
<td>Watts per metre square</td>
</tr>
</tbody>
</table>