The Synthesis of Mycolic Acids

A thesis presented for the degree of

Doctor of Philosophy

in the

School of Chemistry

by

Richard Schubert-Rowles

PRIFYSGOL
BANGOR
UNIVERSITY

© June 2010

This thesis contains confidential information
Contents

Declaration..i
Acknowledgements...ii
Abstract...iii
Abbreviations...v

Chapter 1 - Introduction ..1
1.1 - Tuberculosis...1
1.1.1 - History ..1
1.1.2 - Diagnosis ..4
1.1.3 - Current treatments..5
1.1.4 - Immunology and HIV co-infection..7
1.1.5 - Multi-drug resistance ...8
1.1.6 - Symptoms ...8
1.2 - Mycobacteria..9
1.2.1 - *Mycobacterium tuberculosis* ..9
1.2.2 - Other relevant mycobacteria...10
1.2.3 - Mycobacterial cell envelopes...11
1.3 - Asthma..14
1.4 - Mycolic Acids...16
1.4.1 - Background ..16
1.4.2 - Biosynthesis..29
1.4.3 - Mycolic acid synthesis...31

Chapter 2 - Results and Discussion ..42
2.1 - Project aims ..42
2.2 - Synthesis of *cis*-cyclopropane methoxy- mycolic acid (84)43
2.2.1 - Retrosynthesis of *cis*-cyclopropane methoxy- mycolic acid (84)44
2.2.2 - Preparation of the distal *S,S* α-methyl methoxy unit45
2.2.3 - Preparation of the proximal *cis*-cyclopropane ring51
2.2.4 - Preparation of the meromycolate moiety ..57
2.2.5 - Preparation of the branched hydroxy acid ..62
Acknowledgements

Firstly, I would like to thank Professor Mark Baird for giving me the opportunity to carry out a PhD under his supervision. I would also like to thank Dr Juma'a Al-Dulayymi for his guidance and teachings in the laboratory.

Secondly I would like to thank all the members of the Prof Baird research group, past and present, for their help and "the laughs". In addition I would like to thank all the members of secretarial and technical staff at the School of Chemistry, Bangor. Also thanks go to members of the 7th floor Biocomposites Centre, particularly Slava and Gwynn.

Thirdly, I would also like to thank members of the Professor Johan Grooten research group at Ghent University, Belgium and the Professor Jan Verschoor research group at the University of Pretoria, South Africa, for the testing of samples.

Finally, I would also like to thank every member of my family. Special thanks go to my wife, Heidi, for her support and encouragement.
Abstract

The total synthesis of six naturally occurring enantiomerically pure oxygen containing mycolic acids was achieved. The specific mycolic acids synthesized were cis-cyclopropane methoxy-mycolic acid (I) and α-methyl trans-cyclopropane methoxy-mycolic acid (II) of *Mycobacterium tuberculosis*; and the protected S-α-methyl trans-alkene keto-mycolic acid (III), R-α-methyl trans-alkene keto-mycolic acid (IV), R,R α-methyl trans-alkene hydroxy-mycolic acid (V) and S,S α-methyl trans-alkene hydroxy-mycolic acid (VI) of *Mycobacterium marinum*. Novel routes in the preparation of the first synthetic α-methyl trans-alkene mycolic acids are discussed, utilising methods such as the modified Julia-Kocienski olefination, the Horner-Wadsworth-Emmons reaction and the Michael addition.

![cis-cyclopropane methoxymycolic acid (I)](image1)

![α-methyl trans-cyclopropane methoxymycolic acid (II)](image2)

![Protected S-α-methyl trans-alkene keto-mycolic acid (III)](image3)
R-α-methyl trans-alkene keto-mycolic acid (IV)

R,R α-methyl trans-alkene hydroxy-mycolic acid (V)

S,S α-methyl trans-alkene hydroxy-mycolic acid (VI)
Abbreviations

°C - degrees celsius
aq. - aqueous
b - broad
BAL - broncho-alveolar lavage
BCG - Bacillus Calmette-Guérin
CID-MS - collision-induced dissociation mass spectrometry
d - doublet
d.p. - decimal places
dil. - dilute
DMAP - 4-dimethylaminopyridine
DMF - dimethylformamide
E - entgegen
ELISA - enzyme-linked immunosorbent assay
ether - diethyl ether
GC - gas chromatography
HIV - human immunodeficiency virus
HPLC - high performance liquid chromatography
hrs - hours
Hz - hertz
IMS - industrial methylated spirits
IR - infra-red
J - coupling constant
m - meta-
m - multiplet
M. Marinum - Mycobacterium marinum
m.p. - melting point
M. Tb - Mycobacterium tuberculosis
MALDI - Matrix-assisted laser desorption/ionization
m-CPBA - m-chloroperoxybenzoic acid
min - minute
MIRC - Michael Induced Ring Cyclisation
mmol - millimols
mol. equiv. - molecular equivalents
MS - mass spectrometry
NBS - N-bromosuccinimide
NMR - nuclear magnetic resonance
PCC - pyridinium chlorochromate
Petrol - petroleum spirit (boiling point 40 to 60°C)
ppm - parts per million
PPTS - pyridinium p-toluenesulfonate
PTSA - p-toluenesulfonic acid monohydrate
q - quartet
R - rectus
RT - room temperature
s - singlet
S - sinister
sat. - saturated
t - triplet
TB - tuberculosis
TDM - trehalose dimycolate
THF - tetrahydrofuran
THP - tetrahydropyran
TLC - thin layer chromatography
TPBSH - 2,4,6-tri-isopropylbenzenesulphonyl hydrazide
Children's Emergency Fund)
v.br. - very broad
WHO - world health organisation
Z - zusammen
Chapter 1 - Introduction

1.1 - Tuberculosis

1.1.1 - History

Tuberculosis (TB) is a disease which kills around 3 million people annually, and is thought to have killed more people than any other microbial pathogen.\(^1\) TB is caused by *Mycobacterium tuberculosis* (*M.Tb*), also there are variants originating from Africa including *Mycobacterium africanum, Mycobacterium canettii* and *Mycobacterium bovis*, which are all thought to have an ancestral link.\(^3\)-\(^5\) The genus *Mycobacterium* is estimated at being more than one hundred and fifty million years old and *M.Tb*, three million years old.\(^3\),\(^6\)

It is believed that TB first infected hominoids in East Africa, but there is very little archaeological evidence from this period. Early Africa hominoids began to leave Africa around 1.7 million years ago and it is thought that they took their diseases, including TB, with them. Analysis of Egyptian mummies more than 5000 years old shows evidence of the disease and, in early Egyptian art, the depiction of deformities in figures as a result of contracting TB also supports this theory.\(^7\) There is evidence which shows the presence of TB in India 3300 years ago and China 2300 years ago.\(^8\),\(^9\) It is thought that TB was established in the Americas before the arrival of European explorers, with similar evidence to that found in Egypt.\(^10\),\(^11\)

TB was also well documented in ancient Greece, where it was called phthisis and a treatment was devised by physician Clarissimus Galen of fresh air, milk and sea voyages.\(^2\) Throughout the middle ages there is widespread archaeological evidence of TB.\(^11\) TB was responsible for many deaths throughout the ages and it was not until 1819 when a group of French physicians, the most notable being Rene Theophile Hyacinthe Laennec who wrote *D'Ausculation Mediate*, outlined the physical signs of TB and its pathology.\(^12\) During Laennec's era death rates in many major European and American cities had reached 800-1000 in 100,000 deaths per year.\(^13\),\(^14\)

Over the next 50 years there were no advances in the knowledge of TB, until 1882 when Hermann Heinrich and Robert Koch gave their famous presentation on the tubercle bacillus and on their work to postulate the link between a microbe and disease. More commonly known as the Koch-Henle postulates, to this day they are
still the standard explanation for how an infectious disease arises. Koch was awarded the 1905 Nobel Prize in Medicine and Physiology for his work with TB. In 1890 Koch isolated a substance from tubercle bacilli which rendered the bacteria harmless. He named it tuberculin and in a demonstration he injected himself with tuberculin. He developed a fever and his body temperature was recorded at 39.6 °C, though he never developed TB. After several years of research it was concluded that a positive reaction to tuberculin was caused by latent TB. Over the next 50 years more extensive research into tuberculin and latent TB showed that it was common for a large number of the population to be carriers of latent TB. Since Koch’s work a reliable vaccine has never been developed because TB immunity differs from immunity to many more common microbial diseases. Artificial TB immunity is regarded as passive immunity, where it is acquired either via the transfer of antibodies or activated T-cells, with the affects lasting only a few months, whereas the counter is active immunity, which can be life-long immunity.

It was not until 1921 that Albert Calmette and Camelle Guérin developed a vaccine from *Mycobacterium bovis* called Bacillus Calmette-Guérin (BCG). Acceptance of the vaccine was slow as many people did not believe it to be safe as it was based on live TB bacteria. The use of the vaccine took a significant blow in 1930, when there was a case in Lübeck, Germany where 240 infants under 10 days old were vaccinated and almost all developed TB, with 76 recorded deaths. It was later discovered that the BCG sample used had been contaminated with a virulent strain, however this dealt massive damage to the acceptance of the vaccine and legal action was taken against the developers. In the 1940’s BCG had become more widespread being used in Scandinavia, France, Spain, Russia, Latin America and some Eastern European countries. Swedish Professor Arvid Wallgren was one of the biggest supporters of the vaccine, and argued the case for the vaccine’s use in Germany. After the incidents in Lübeck, the BCG vaccine had been banned in Germany and Wallgren highlighted the fact that prior to the tragedy regular vaccinations of infants in Gothenburg had reduced the mortality rate from 4 in 1000 to 1 in 1000. However, in spite of the efforts of Wallgren and others, the vaccine was not accepted in Britain and the United States, with the Director of the Public Health Laboratory Service, Sir Graham Wilson, pointing out flaws in the evidence backing BCG in 1947. In 1950 the opinion remained in the US that BCG was only needed in highly exposed or war-torn countries and as an emergency measure. The
decision whether or not to use BCG vaccination was dependent upon how the evidence was interpreted as the data was insufficiently clear to fully accept or reject the vaccine. However outside of Western Europe and North America, the largest vaccination effort ever was undertaken by the WHO and UNICEF, who decided to support BCG. During the ninth UNICEF-WHO meeting in 1956 it was discussed whether the BCG vaccination efforts were actually effective and the chairman Professor Debré requested studies of the efficacy of BCG in underdeveloped areas. By 1959 a report was readied which indicated that the value of the BCG vaccination was not clear. This may be interpreted as an admission that the degree of protection provided by the vaccination may not have justified such a large scale application of BCG. The report included evidence from the first trials conducted by Aronson and Palmer on a population of 3000 North American Indians in 1936 which showed a reduction in mortality of 75% over 15 years. Another study carried out in Britain on 50,000 infants showed similar success, although only in its fourth year in 1959. In contrast there were results from two trials carried out by the US Public Health Services on 200,000 Puerto Rican under 19's and on 65,000 individuals from two US communities in Georgia and Alabama, with protective success rates of 31% and 36%, respectively. The WHO suggested that the vaccine used in the trials which showed a low protective rate may have lacked potency and also that some individuals included in the survey may have had a low sensitivity to the vaccine. It was suggested that people with a low sensitivity were “associated with a considerable resistance to tuberculosis” and hence obscured the true protective properties of the vaccine. Several more reports were carried out over the next five years to justify the use of BCG, however in 1963 the WHO proposed a large-scale trial in India with the justification that, although there were many anti-TB drugs available, none had been able to establish themselves and that BCG offered a cost effective method of dealing with TB. In 1968 the trial in India, being carried out by the Indian Council of Medical Research in conjunction with the US Public Health Services and WHO, began. The trial was conducted over nine years on 360,000 people in the Chingleput district of southern India. The results were published in 1977 and to the surprise of the WHO they indicated that BCG showed no protective effects. However the WHO did not abandon its policies regarding the BCG vaccine, but stated that several factors must be considered including the environmental and immunological characteristics of the population studied.
the Chingleput trial the WHO continued to back the use of BCG as a vaccine stating that “although BCG was not very effective from the epidemiological point of view, it was invaluable from the clinical standpoint for the prevention of severe and fatal forms of TB in children”.

Like many other infectious diseases TB has surged in great epidemics and then receded, where epidemics have been recorded during the 18th and 19th centuries in Europe and North America. During the early to mid 19th century there was a noticeable decline in TB cases in Europe and North America; there are many hypotheses for this but none of them can fully explain the decline. However elsewhere the TB epidemic continued, particularly in areas where AIDS is prominent. In the late 19th and early 20th centuries physicians were using a technique called surgical collapse therapy to treat TB, where the infected lung of a patient was collapsed and then sterilized, with a fairly good success rate. It was thought that around 30 years ago that it was no longer a threat and that it was close to eradication, however between the early 1980’s and late 1990’s TB resurfaced. In 1995 more people died from TB than in any other year. The reoccurrence of the disease is believed to be due to numerous factors, which include the emergence of drug-resistant strains of mycobacteria, poor drug compliance and the ease of infection of victims of the AIDS epidemic.

1.1.2 - Detection

TB was first detected in the 1930’s via radiographic fluoroscopy, where initially a patient stood so that an X-ray image was transmitted onto a fluorescent screen without the use of film. As this method is very dangerous the use of film and then later tomography was implemented. At the end of the century computerized axial tomography and nuclear magnetic resonance tomography was being used to distinguish between TB and cancer lesions in the chest. However as pulmonary lesions develop very quickly such screening methods would be needed to be carried out more frequently than would be considered practical.

Until the 1950’s diagnosis via bacteriology was carried out using a direct smear Ziehl-Neelsen method. Although a direct smear method is rapid and highly specific it has a low sensitivity. Fluorescent microscopy slowly replaced the direct smear method as it is five times more rapid and more sensitive. From the 1950’s onwards many bacteriologists adopted methods using cultures, with many favouring
a Lowenstein-Jensen medium; however a lyophilized liquid medium was later favoured over the Lowenstein-Jensen medium, as it was simpler to prepare and gave better results. In 1977 an automated method using a liquid medium containing radioactive palmitic acid was adopted, although it was deemed too expensive for developing countries and other methods using non-radioactive compounds are now preferred.

1.1.3 - Current Treatments

Mycobacteria are problematic as they are resilient to most commonly used antibiotics and chemotherapeutic agents. The two classes of antibiotics which are most effective against TB are aminoglycosides, comprised of sugar and amino groups, and rifampcins, which are obtained either naturally from the bacterium *Amycolatopsis mediterranei*, or produced artificially. The first antibiotic to be used was streptomycin in 1946 and by 1955 many Western doctors had adopted the strategy of combining streptomycin (1) with *p*-aminosalicylic acid (2) and isoniazid (3) (See Fig. 1).

![Chemical structures](image)

Fig 1: Streptomycin (1), *p*-aminosalicylic acid (2) and Isoniazid (3).
Mycobacteria are also resilient to many chemical disinfectants, which makes prevention of transmission in a high density population area very difficult. The use of chemotherapy to treat TB is highly effective and as a result the number of cases of TB has dropped in developed countries. However in underdeveloped countries, where the disease is most prominent, there is poor compliance with the six-month, multi-drug course. In 1994 the WHO developed a short-course chemotherapy (SCC) treatment for TB, now called Directly Observed Therapy, Short-course (DOTS) where a patient is put into a programme where the administration of medication is supervised. The drugs used in this scheme firstly involve a two month course of either: streptomycin (1), isoniazid (3), rifampcin (4) and pyrazinamide (5) or: isoniazid (3), rifampcin (4), pyrazinamide (5) and ethambutol (6) (See Fig. 2). This is followed by a four month course of isoniazid (3) and rifampcin (4).

![Fig. 2: Rifampcin (4), pyrazinamide (5) and ethambutol (6).](image)
However it has been reported that some patients who follow this regimen have suffered side effects, the most serious of which is hepatotoxicity, chemical-induced liver damage, to isoniazid recorded at an average of 0.92 %, with a fatality rate recorded at 4.7 %, with occurrence higher in older patients. Other serious adverse effects include dermatological, gastrointestinal, hypersensitivity, neurological, haematological and renal reactions. For these reasons some patients do not finish the regimen and as a result the slow growing bacteria are not eradicated; this is problematic as the patient may not be fully cured.

In 1993 the WHO announced a global health emergency with regards to TB. The WHO have developed the Stop TB Partnership which aims to target the areas where current TB rates are worsening and to halve the mortality and prevalence rate by 2015, the result of this would be to save an estimated 14 million lives.

1.1.4 - Immunology and HIV co-infection

M. Tb is known to remain within the granuloma of the host's organs. Granuloma are a collection of cells which are responsible for immunity, including macrophages and lymphocytes. T cells are the lymphocytes which play a primary role in immunity within a host. Another type of immune cell, which plays a role in the modulation of immunity, are the dendritic cell, which are responsible for capturing and processing antigens. The method of processing antigens that the dendritic cell undertakes is to produce T cells, which in turn induces production of a cytokine called Interleukin-12. Interleukin-12 is key in controlling the infection caused by *M. Tb*, where evidence of this has been observed in mice.

With regards to a co-infection of HIV, mainly in Africa and Asia, there has been an increase in the number of cases where HIV-infected patients are developing TB. HIV is a retrovirus that infects the immune system of humans, where it impairs the host's ability to combat disease. In relation to TB infection, HIV decreases the production of T-lymphocytes, which leads to a reduction in Interleukin-12 and hence a high risk of infection by *M. Tb*. It has also been documented that patients who have contracted TB have an increased susceptibility to HIV, which is associated with proinflammatory cytokine production by TB granulomas.
1.1.5 - Multi-drug resistance

The two most important drugs in the DOTS strategy are isoniazid and rifampcin, and when a patient becomes resistant to them they are known as having multidrug-resistant tuberculosis (MDR-TB).45, 58 MDR-TB can occur during the treatment for fully sensitive TB, if a patient misses a dose, a patient does not complete the course or if the doctor administers the wrong treatment.58 MDR-TB positive patients are unlikely to transmit MDR-TB to a healthy person, however an immunosuppressed patient is at an increased risk of contracting MDR-TB.59 The treatment of MDR-TB is a long course of second-line drugs, which are more expensive and have far more severe side effects in comparison to first-line drugs.60

If a patient with MDR-TB becomes resistant to second-line drugs, then they are known to have developed extensively drug-resistant tuberculosis (XDR-TB). XDR-TB is very similar to MDR-TB in that transmission between patients is the same and that it arises in a similar fashion. However two differences are in the treatment and mortality rate.61 The treatment of XDR-TB is an extensive two year course of chemotherapy, however like MDR-TB treatments can vary from patient to patient, depending on which drugs they have become resistant to. The mortality rate for patients having XDR-TB in comparison to MDR-TB is much higher. In 2006, 53 South African patients were confirmed to have XDR-TB where 52 died.62

1.1.6 - Symptoms

TB is similar to a common cold in that it is transferred through the air, where an infectious person will propel TB bacilli through the air in a cough, their spit or a sneeze, where only a small number of bacilli need to be inhaled by a person for them to contract an infection.63 A. Baydur documented the symptoms of tuberculosis, including chronic coughing, fever, weight loss and hemoptysis (expectoration of blood), in a study of 62 patients.64 It has been reported by C.B. Holmes \textit{et al.} that there are more men infected with TB, but more women sufferers of TB and as a results more deaths in women.65 A study conducted by N.H. Long \textit{et al.} shows that men are more at risk of experiencing symptoms of TB. Cough (women 90.7 %, men 94.7 %), sputum expectoration (women 83.6 %, men 89.9 %) and hemoptysis (women 27.8%, men 34.9 %) are all more prevalent in men.66 A reasonable explanation for this is that the development of lung lesions in women is less
advanced in comparison to men, and that men have a stronger hypersensitivity to mycobacteria than women.66-68

1.2 – Mycobacteria

1.2.1 – Mycobacterium tuberculosis

\textit{M. Tb} occurs as a rod-shaped bacillus, roughly 1-4 x 0.3-0.6 µm in size (See Fig. 3), which divides aerobically every 16 to 20 hours.1 This rate of division is very slow in comparison to other bacteria, such as \textit{Escherichia coli} where division occurs in minutes.69

\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{mycobacterium_tuberculosis.png}
\caption{Scanning electron micrograph of \textit{Mycobacterium tuberculosis}70}
\end{figure}

\textit{M. Tb} is classified as a Gram-positive bacterium, due to the high lipid content in its cell wall, \textit{M. Tb} only gives very weak results in a Gram stain test.41 \textit{M. Tb} is empirically classified as an acid-fast Gram positive bacterium, where they are resistant to decolourisation by acids in staining procedures. Mycobacteria have a cell wall high in lipid content, and as a result they have poor absorption and high retention of standard Gram stains, therefore alternative methods must be used.71 \textit{M. Tb} can be observed using a fluorescent microscope with a Ziehl-Neelsen stain (See Fig. 4). \textit{M. Tb} is usually found within moist conditions, however it can also be classified as a Xerophile, as it can survive for several weeks in a dry state.
1.2.2 - Other relevant mycobacteria

M. Tb is related to other pathogenic mycobacteria, with some responsible for causing tuberculosis in other species of animal and some causing other non-tuberculosis diseases in humans. Of the tuberculosis causing mycobacteria one of the more well known is *Mycobacterium bovis*, responsible for tuberculosis in cattle, which is of concern as there is evidence that *M. bovis* is transferable to humans via an infected cow’s milk or via an aerosol. *Mycobacterium africanum* is most commonly found in West Africa, with similar symptoms to *M. Tb* being observed. *Mycobacterium microti* is the causative agent behind tuberculosis in small mice and voles, but occurrence in humans of *M. microti* is very limited. *Mycobacterium marinum* infects around 150 species of fish with tuberculosis; J.D. Aronson first isolated the mycobacteria in 1926 from a salt water fish. Tuberculosis is rarely caused by *M. marinum* in humans, however some skin infections occurring after contact with contaminated water sources. *Mycobacterium avium* is responsible for tuberculosis in birds, however it has been reported to cause inflammation of the lymph nodes, lymphadenitis, in children. Of the non-tuberculosis mycobacteria, *Mycobacterium leprae* is responsible for the infamous disease leprosy (a.k.a Hansen’s disease). *Mycobacterium scrofulaceum* and *Mycobacterium canettii* also cause lymphadenitis in children. *Mycobacterium kansasii* is considered not to be dangerous to healthy individuals, however it has been found in immunocompromised patients. Another non-tuberculosis mycobacterium of particular interest is *Mycobacterium ulcerans*, responsible for causing skin diseases associated with the Buruli ulcer (See Fig. 5).
1.2.3 - Mycobacterial cell envelopes

M. Tb can withstand mild disinfectants, hence prevention of transmission becomes very problematic.\(^1\) This resilience to disinfectants is believed to be due to *M. Tb* having an impermeable, hydrophobic cell wall.\(^1\)\(^,\)\(^84\) The hydrophobicity is due to the complex structure of the cell envelope of mycobacteria, which can be broken down into three main units, the plasma membrane, the cell wall and the capsule layer.\(^1\)\(^,\)\(^85\) The plasma membrane of a *Mycobacterium* is consistent with other organisms, however the cell wall, the capsule layer and its linkages differ. The cell wall is comprised of an *N*-glycolated peptidoglycan linked to a polysaccharide side chain, *D*-arabino-*D*-galactan, which is esterified with mycolic acids, giving the mycolyl-arabinogalactan-peptidoglycan complex. The capsule contains noteworthy quantities of genus/species specific lipids, which form an outer membrane (See Fig. 6).\(^1\)\(^,\)\(^85\)-\(^87\)
Mycobacteria are documented as having a thick waxy coating, which is due to a high content of lipid unique to mycobacteria. It was originally believed that this high lipid content was responsible for the low permeability of mycobacteria. Although the arrangement of the major constituents to the cell envelope is not fully understood, P. Draper noted that the capsule layer distinctly separates the pathogenic *Mycobacterium* from any external organisms.

The cell envelope’s high lipid content is well documented and unique to mycobacteria, occurring in the form of methyl branched fatty acids, trehalose dimycolate (TDM), as well as many others. The mycolic acids are bound directly to the arabinogalactan layer of the cell envelope via the carboxylic acid functional group (7) (See Fig. 7), arranging to form a mono-layer which contributes to the protection and hydrophobicity of mycobacteria. These mycolic acids can contribute around 40% of the overall weight of the mycobacterial cell envelope.
TDM, or "cord factor", is an interesting lipid component of the cell envelope, consisting of two mycolic acids esterified to trehalose at the 6 and 6' positions (8) (See Fig. 8).\(^9\) Cord factors differ from mycolic acids in that they are not bound to the arabinogalactan layer of the cell envelope, and as a result are readily extracted from the cell wall with an appropriate solvent, giving them the classification as a "free lipid".\(^9\)

Cord factors have shown to exhibit properties that increase resistance to the influenza virus, *Salmonella typhi* (typhoid) and *Salmonella typhimurium* (gastroenteritis).\(^9\) Synthetic cord factors prepared by M. Maza-Iglesias *et al.* have shown optimised performance compared to an *M.Tb* extract.\(^9,9^6\)
1.3 – Asthma

Asthma is a chronic disorder of the airway, where narrowing of the airway occurs and breathing becomes extremely difficult. It is recorded in literature that dates back to the time of the ancient Greeks, around 100 A.D.. In 1698 Sir John Floyer described the disorder:

“When the Muscles labour much for Inspiration and Expiration thro' some Obstruction, or Compression of the Bronchia, etc. we properly call this a Difficulty of Breath: but if this Difficulty be by the Constriction of the Bronchia, 'tis properly the Periodic Asthma: And if the Constriction be great, it is with Wheezing; but if less, the Wheezing is not so evident.”

His explanation is consistent with the symptoms of an asthma attack as recognised today. The main symptoms used today to judge the severity of an attack include alertness, breathlessness and wheezing. The origins of an “attack” are from one or more triggers, including exertion, change in air temperature, environmental allergens such as dust, or stress. Attacks are more common in children and can be brought on by a related infection, such as a common cold. During an asthma attack an environmental stimulant will react with the airway, leading to an immune response in the airway, restricting the airway and producing excess mucus. Hence an asthma attack is a result of the body's immune response, trying to prevent an external organism entering the body. This immune response is triggered because the patient has an inflamed airway and is hypersensitive to specific environmental triggers. The cause of asthma is believe to be due to genetic and environmental factors. Exposure to tobacco smoke, air pollution from automobiles and high levels of ozone are all factors that have been suggested to increase asthma prevalence. It has been suggested that there are 25 genes which are associated with asthma, however research in these areas is ongoing.

Asthma symptoms are not cured, but are relieved; in 1905 this was done using an alkaloid known as daturine, from Jimson Weed (Datura stramonium). A tincture of Jimson Weed leaf was made and taken orally, the result of the alkaloid was smoothening of the muscles in the airway. Today similar alkaloids, salbutamol, levosalbutamol and terbutaline, are administered via a metered-dose
inhaler (MDI). The biggest selling asthma therapeutic sold today is fluticasone propionate, available commercially as either Advair or Seretide.107, 108 Several treatments for asthma have been used during the history of medicine, one of the more interesting methods was the use of asthma cigarettes (See Fig. 9), which were cigarettes comprised of dried Jimson Weed which the patient smoked either by itself or mixed with conventional tobacco. They were commercially available, however, at a time when smoking tobacco was considered of benefit, the possible side-effects may not have been fully understood.107, 109, 110

![Asthma cigarettes](image)

Fig. 9: Asthma cigarettes111

J. Korf \textit{et al.} documented evidence that a mycobacterial cell envelope extract provides therapeutic affects toward asthma.112, 113 They discussed the immune response to a direct application of mycolic acid, incorporated into a liposome to overcome hydrophobicity issues, and TDM to the airway of a mouse. The study shows the result of application of a liposome control (L), mycolic acid-liposome (MA-L), TDM-liposome (TDM-L) and heat-killed \textit{M.Tb}. They show that the MA-L, TDM-L and \textit{M.Tb} all elicit an immune response in the form of cholesterol rich-foamy macrophages, in varying degrees (See Fig. 10).113
The foamy cells produced have shown the potential to prevent experimentally induced asthma in mice. Therefore the preparation of synthetic mycolic acids and cord factors (TDM) is of particular interest to provide more information into this immune response.

1.4 – Mycolic Acids

1.4.1 - Background

The lipid content of the *M. Tb* cell wall was first reported by R.J. Anderson, where he discovered that the cell wall of the tubercle bacilli had a high lipid content of around 40 %. Anderson *et al.* characterised the lipids they found as being "hydroxyl acid of very high molecular weight" and they contained complex mixtures with different compositions. They proposed the name of "Mycolic Acid" and calculated empirical formulae from its composition as C$_{88}$H$_{172}$O$_4$ or C$_{88}$H$_{176}$O$_4$. They also described the methods used to isolate "Mycolic Acid", via saponification of the wax extract from the cell. Anderson *et al.* also elucidated structural details, reporting one COOH, one OH and OMe, and that pyrolysis under vacuum at 300 °C yields hexacosanoic acid. Mycolic acids were also found in other mycobacterial strains including bovine and avian, showing similar characteristics with regards to the hydroxyl group and pyrolysis products. Later work carried out by J. Asselineau and E. Lederer confirmed the position of the hydroxyl group first reported by Anderson *et al.* to be in the β-position to the carboxylic acid, with a pyrolysis reaction of mycolic acid (See Fig. 11).
However when Asselineau and Lederer carried out this pyrolysis they reported no aldehyde formation, but a mixture of methoxy-free compounds. They then set about confirming the above structure, heating mycolic acid with acetic anhydride and 10 % potassium hydrogen sulphate to hydrolyse the β-hydroxyl group to give the α,β-unsaturated anhydro-mycolic acid (9). Ozonolysis of (9) results in oxo-hexacosanoic acid, and further oxidation gives pentacosanoic acid (10) (See Fig. 12).

The work carried out by J. Asselineau and E. Lederer enabled them to define mycolic acids as high-molecular weight β-hydroxy fatty acids with a long chain in the α-position.
With the use of advanced spectroscopic techniques, in the 1960's D.E. Minnikin and N. Polgar worked on the structural determination of mycolic acids.\(^{124-128}\) Using analytical techniques such as chromatography, to separate the mycobacterial extract, infra-red, \(^1\)H NMR, optical rotation, ultra-violet and low-resolution mass spectrometry they were able to derive four main functionalities. With this addition to the \(\alpha\)-alkyl \(\beta\)-hydroxy fatty acid functionality discovered by Asselineau and Lederer, full structures of mycolic acids were hypothesised. The four functional groups proposed were keto, methoxy, \textit{cis}-cyclopropane and \textit{trans}-cyclopropane groups, occurring in various configurations at distal and proximal positions.\(^{124,127}\) Work has since been carried out confirming these findings and also classifying further functionalities, including \textit{cis} and \textit{trans} olefins and epoxy groups.\(^{129}\) The structure of a mycolic acid can be separated into two main fragments, the branched hydroxy acid and the meromycolate. The branched hydroxy acid contains the \(\alpha\)-alkyl \(\beta\)-hydroxy fatty acid functionality and the other functionality discussed by Minnikin and Polgar is found within meromycolate (See Fig. 13).

\[
\begin{align*}
\text{Meromycolate} & \quad \text{Branched hydroxy acid} \\
\text{[X]} & \quad \text{[Y]} \\
\text{[X]} = \text{Distal position} & \quad \text{[Y]} = \text{Proximal position}
\end{align*}
\]

Fig. 13: Generic mycolic acid

It has been reported that mycolic acids are esterified to the arabinogalactan within the mycobacterial cell envelope,\(^88,89\) and that the meromycolate chains are aligned parallel to each other, with the methyl groups arranged so that they are towards the surface.\(^1,38,89\) The stacking of the long hydrocarbon chains is affected by the functional group present at the distal and proximal position, as they vary in type, stereochemistry and spacing.\(^{129}\) As the functionality of these positions appears to play an important role in the mycobacterial cell envelope, the resultant mycolic acids
have been catalogued by their functionality. Type-1 mycolates contain no olefin, Type-2 include all *trans* olefin mycolates and Type-3 have only *cis* olefins (See Fig. 14).129,130

Fig. 14: General functionality of the major mycobacterial mycolic acids129
Other oxygenated mycolic acids have been discovered in mycobacteria, where they vary at the distal position [X]. They are, e.g., epoxy-mycolic acids of *Mycobacterium fortuitum*, wax ester-mycolic acids of *Mycobacterium aurum*, hydroxy-mycolic acids of *Mycobacterium bovis*, ω-carboxy-mycolic acids of *Mycobacterium phlei* and ω-1-methoxy-mycolic acids of *Mycobacterium alvei* (See Fig. 15).\(^{131-136}\)

![Other oxygenated mycolic acids](image)

Mixtures in the chain lengths in mycolic acids also occur, as a result this gives rise to a far greater quantity of different mycolic acids. In the *M. Tb* cell envelope there are believed to be over 500 different mycolic acids present.\(^{137}\) Separation of individual mycolic acids is highly problematic due to the variation in chain lengths, however M. Watanabe *et al.* carried out column chromatography to separate the α-mycolate, methoxymycolate and ketomycolate cell envelope components, eluting with diethyl ether/hexane (6:100). This enabled them to compile a catalogue of mycobacteria with ratios of the different mycolic acids present. Watanabe *et al.* utilised \(^1\text{H} \text{NMR} \) and MALDI-TOF spectroscopy to catalogue the different ratios of functional classes in each *Mycobacterium* and collision-induced dissociation mass spectrometry (CID-MS) to determine the exact positioning of the
functional groups in each meromycolate chain.129,130 They discussed the separation and characterisation of meromycolic acids prepared from methyl mycolates as described by J. Krembel and A.H. Etémadi.138 They also used the pyrolysis of mycolic acid methyl esters, at around 300 °C, to give meromycolaldehydes and carboxylic acid methyl esters, and subsequent oxidation of the meromycolaldehydes with silver oxide to give the corresponding meromycolic acids (See Fig. 16).

\[
\begin{align*}
R = \text{meromycolate} \\
\text{R}H & \overset{\Delta}{\longrightarrow} \overset{\text{AgNO}_3}{\longrightarrow} \overset{\text{meromycolic acid}}{\text{R}OH + \text{R}H} \\
\text{CH}_3(\text{CH}_2)_n\text{CH}_3 & \overset{\text{Me}}{\text{Me}}
\end{align*}
\]

Fig. 16: Meromycolic acid preparation

Analysis of the meromycolic acid was carried out by Watanabe \textit{et al.}, utilised CID-MS as meromycolic acids have a stable charged region. This is due to a carboxylate anion being at the end of the meromycolate chain, which enabled Watanabe \textit{et al.} to gather information on the positions of the meromycolate functional groups, hence allowing them to determine a series of chain lengths for each mycolate present.130 Of the ten mycobacteria that Watanabe \textit{et al.} studied they catalogued over 50 different mycolic acids present, including α-mycolates (See Fig. 17), methoxymycolates (See Fig. 18) and ketomycolates (See Fig. 19).
Fig. 17: Major α-mycolates

a-b-c-d
19-14-11(13)-23 M. tuberculosis, M. bovis, M. bovis BCG, M. microti
17-14-17-21 M. kansasii, MAC, M. scrofulaceum
17-14-13-21 M. marinum

17-14-18-21 M. kansasii, MAC

19-13-17-23 M. tuberculosis Canetti
17-15-17-21 MAC
17-13-17-21 M. scrofulaceum

19-14-13-23 M. bovis BCG, M. microti

19-14-13(11)-23 M. tuberculosis
17-14-17-21 MAC
17-14-15-21 M. marinum

17-10-[6-13;4-15]-23 M. tuberculosis H37Ra
Fig. 18: Major methoxymycolates130
Fig. 19: Major ketomycolates
Mycolic acids occur within all mycobacteria, in varying combinations of functionality type and chain length. Therefore during diagnosis of mycobacterial disease mycolic acids can be useful in predicting if the disease is tubercular or non-tubercular. Methods have been developed using HPLC to identify characteristic mycolic acids specific to one *Mycobacterium*.

Minnikin and Draper both noted that mycolic acids are directly esterified to the arabinogalactan layer with the cell envelope, with the meromycolate chains possibly in a linear conformation facing outward toward the outer surface of the cell. The configuration of the mycolic acid chains are now believed to be able to assume a folded form, with the four alkyl chains occurring parallel to each other (See Fig. 20).

![Fig. 20: Mycolic acid folding conformation](image)

Villeneuve et al. and Hasegawa et al. both discussed the changes which occur in configuration of the alkyl chains when put under varying temperatures and pressure. This suggests that at low temperature and pressure the folding configuration observed above (Fig. 20) is retained, however as temperature and pressure is increased this linearity is lost. E.P. Grant et al. also suggested that the alkyl chains of oxygenated mycolic acids line up in a linear fashion. The rationale behind this is that this folding configuration would cause the oxygenated groups to form an epitope, acting as a site for recognition within the immune system.

Significant work has been carried out to determine the absolute stereochemistry in mycolic acids, however this work is ongoing. It has been determined that the alkyl chain and hydroxy group, found in the α and β-positions to the carboxylic acid, are found to both be in an *R*-configuration in all mycolic acids which have been investigated (See Fig. 21).
The configuration at these two chiral centres is believed to play an important role in T cell recognition.149 It is believed that the oxygenated mycolic acids of the \textit{M.Tb} complex exhibit distal methyl branches and distal oxygenated functionalities in the \textit{S}-configuration (See Fig. 22), which provides us with a biosynthetic link between the three types.135,150

Other distal functionalities have known stereochemistries, with the distal epoxy group, which C. Lacave \textit{et al.} report showing \textit{R}-configurations for all three chiral centres. Further inspection of this report shows that they have actually misinterpreted their own evidence, due to improper use of the Cahn-Ingold-Prelog priority rules, and the epoxy group is actually occurring in the \textit{R,S,S} configuration. A recent report by M. S. Baird \textit{et al.} gives a synthetic strategy to obtain the epoxy group in the correct configuration.151,152 The wax ester occurs with the methyl group in the \textit{S}-configuration (See Fig. 23), the formation of the wax ester is also believed to be via an enzymatic oxidation of the \textit{S}-keto mycolic acid.118,150,152
Little is known regarding the non-oxygenated functionalities of mycolic acids, particularly in the case of \textit{cis}-cyclopropanes. The \(\alpha\)-methyl of the \textit{trans}-alkene unit, present in the mycolic acids of the \textit{M.Tb} complex, is known to be in the \(R\)-configuration (See Fig. 24).130,152

However a report discussed a synthetic strategy targeting multiple diastereomers of the \(\alpha\)-methyl-\textit{trans}-cyclopropane unit. After analysis of the optical rotation, \(^1\text{H}\) NMR and \(^{13}\text{C}\) NMR, in comparison with work carried out by Anderson \textit{et al.}, M.S. Baird \textit{et al.} deduced that the \(\alpha\)-methyl-\textit{trans}-cyclopropane unit is found in the \(S,R,S\)-configuration (See Fig. 25).153,154

The configurations discussed above were deduced using measured molecular rotations (\(M_D\)), where \(M_D\) can be calculated from measured optical rotation and molecular weight of a compound. Interestingly, it is possible to calculate a
theoretical value for a complete mycolic acid by adding the contributions from each chiral centre.135

It has been discovered that the functionality present in the mycolate plays a role in the fluidity of the cell wall and permeability.155, 156 It is also known that α-mycolates occur in higher amounts than any other subclass of mycolate in \textit{M.Tb}, and that the presence of a cyclopropane ring plays a significant role in its pathogenesis.129, 157 The cyclopropanes of mycolic acids are able to withstand ozonolysis and other oxidative environments better than their olefin counterparts, which would explain why they are in high abundance within mycobacteria.158 In the biosynthetic growth of \textit{trans}-cyclopropane containing mycolates a higher proportion of oxygenated mycolates are recorded, which provides evidence to suggest that \textit{trans}-cyclopropanes and oxygenated functionalities are biosynthetically related.159

Keto-mycolates have been shown to play key roles in the virulence and in regulating the fluidity of the cell wall of \textit{M.Tb}.160, 161 It is also known that slow-growing pathogens, such as \textit{M.Tb}, are able to manipulate the proportions of methoxy and keto-mycolates. This enables the pathogen to control the permeability properties of the \textit{Mycobacterium}'s cell wall; it is believed that the pathogen does this so that it is better adapted to its environment.161, 162 It is also known that keto-mycolates behave differently to α-mycolates when subjected to changes in pressure in monolayers; where the α-mycolates are seen to be fully extended at high pressure, keto-mycolates do not exhibit extension to the same extent.143-145 Therefore it is believed that keto-mycolates play an important role in permeability of the cell wall.144 It has been documented that loss of the methoxy-mycolates does not have an adverse affect on the pathogen's permeability and hence its resistance to therapeutic agents.163

The presence of \textit{cis}-olefins in the meromycolate chain has an effect on the packing of the mycolates in the cell wall, causing "a permanent elbow of about 120°". Whereas a \textit{trans}-olefin would not cause as much disruption in the chain, however due to the presence of a methyl group adjacent to the olefin there is some disruption in the chain, with packing tighter than that of \textit{cis}-olefin containing mycolic acids.137 It has also been recorded that a higher content of \textit{trans}-olefins is seen if the mycobacterium is grown at increased temperatures; this also suggests that the mycobacterium regulates the production of olefins to favour a more rigid cell wall for additional protection from the external environment.156
Studies on the function of mycolic acids are ongoing, however further understanding of the effects that functionality have on the fluidity and permeability of the cell wall may give an insight into possible anti-mycobacterial agents.

1.4.2 – Biosynthesis

The biosynthesis of mycolic acids has been investigated in great detail by J. Krembel and A.H. Etémadi, Y. Yuan et al., E. Dubnau et al., C. Asselineau et al., K. George et al. and M. Daffé et al.. The work carried out by these groups identified that most major functionalities in the meromycolate are derived from a common intermediate. This intermediate is generated using S-adenosyl-L-methionine (SAM) (11). Methylation of a cis-olefin (12), using SAM, gives the carbocation intermediate (13) (See Fig. 26).

Further work has been carried out where labelled SAM has been used so that the methylation and any subsequent reactions can be tracked. This has shown that the methyl group introduced via SAM occurs as a bridging methylene in cis-cyclopropanes, as methyl branches of trans-olefins and cyclopropanes, and the α-methyl branches of hydroxy, keto and methoxy-mycolates.

Deprotonation of the carbocation intermediate (13) may occur at two different positions, yielding two different products. If deprotonation of H_a occurs, a
cis-cyclopropane (14) will result; conversely if deprotonation of H_b occurs then the trans-olefin (15) is yielded. Further methylation of the trans-olefin, involving SAM, gives the trans-cyclopropane (16). If the carbocation intermediate (13) undergoes a hydration reaction the hydroxy-mycolate (17) is formed, which is a precursor for the biosynthesis of the corresponding keto (18) and methoxy (19) mycolates (See Fig. 27).137,162

![Diagram of the biosynthesis of meromycolate functionality](image)

It is interesting that in *M. Tb*, the gene which is required for the biosynthesis of trans-cyclopropyl mycolates is active in the production of both keto trans-cyclopropyl mycolates and methoxy trans-cyclopropyl mycolates.170 This is of particular importance as it confirms the hypothesized biosynthetic link between the different functionalities. As previously discussed, understanding the impact of individual functionality on virulence, cell wall fluidity and permeability, and how the
different mycolates are naturally prepared is important as it enables us to determine how to manipulate the cell wall of the pathogen, and thus provide us with a tool for which to combat disease.170

1.4.3 – Mycolic acid synthesis

Mycolic acids have been of interest to a variety of research groups, particularly from a synthetic point of view. Synthesizing single enantiomers of mycolic acid can help in the determination of stereochemistries of naturally occurring mycolic acids. Preparing mycolic acids with known chiral centres in the meromycolate chain can also help to gain a further understanding of the biosynthesis of mycolic acids. It has previously been shown that the length of the meromycolate chain and the functionalities present play an important role in the functions of the cell wall, so a better understanding of the affects of the mycolic acid content may lead to a new approach in the therapy of mycobacterial disease.171

An important application of synthetic mycolic acids is in TB therapy. As discussed earlier, the recurrence of TB and the co-infection with HIV has become a major cause for concern in developing countries. One application of synthetic mycolic acids, which might help alleviate these problems, is in detection of TB causing mycobacteria. It is believed that there are individual mycolic acids which are exclusive to one \textit{Mycobacterium}; therefore, if the structure of these mycolic acids were to be known an enantiomerically pure synthetic compound may be produced and compared to a sample of the mycolic acids obtained from the mycobacteria infecting the patient. Ultimately, every exclusive mycolic acid may be prepared and used in this way to give a definitive diagnosis technique, which would enable medical practitioners to treat mycobacterial disease more efficiently. Another application of mycolic acids is as an adjuvant. An immunologist called J.T. Freund used an extract of the cell envelope of \textit{M.Tb} as an immunologic adjuvant, which promotes dendritic cell response within the body. Experimentally it was believed that Freund’s adjuvant could prevent the development of diabetes in children. However many patients developed symptoms of TB and as a result Freund’s adjuvant was banned.172, 173 Mycolic acids have been shown to produce an antibody response similar to that of a TB infection, therefore it may be possible to replace Freund’s adjuvant with mycolic acids.149
Another area of interest is asthma, where mycolic acids have been shown to produce a positive immune response when directly applied to the airway of a mouse.113,114

Mycolic acids are generically considered to be made up of a meromycolate and a branched hydroxy acid, where the meromycolate contains two major functionalities. When synthesising a mycolic acid it is sensible to address each motif separately.

One of the first syntheses was conducted by W.J. Gensler et al. in 1977.174 They cyclopropanated 1,4-cyclohexadiene (20) giving noracarene (21); ozonolysis, followed by a reduction of (21) gave cis-1,2-cyclopropanediol (22).175 Protection of the diol (22) with a tetrahydropyranyl group, followed by bromination of the resultant alcohol gave (23). Chain extension of the bromide (23) was carried out using 2-pentadecyl-1,3-dithiane (24), which was obtained via alkylation of the lithio derivative of 1,3-dithiane with pentadecylbromide, giving the 2,2-disubstituted dithane (25). Desulfurization176 of (25), followed by hydrolysis, then bromination gave the corresponding bromide (26). Further chain extension using the bis-dithiane (27) gave (28), which Gensler et al. considered the first major component, they called the "Methyl End", of their target meromycolate (See Fig. 28).174

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{methyl_end}
\caption{Gensler et al.'s "Methyl End"}
\end{figure}
The second major constituent of Gensler et al.'s meromycolate, called the “Carboxyl End”, was prepared starting with ozonolysis of 10-undecenol (29); conversion of the corresponding alcohol into the acetal was then carried out, followed by bromination to give (30). Chain extension by six carbons gave (32), then coupling of this to the previously prepared bromide (23), followed by desulfurization, deprotection of the tetrahydropyranyl group (33) and bromination gave (34). The acetal (34) was Gensler et al.'s “Carboxyl End” intermediate (See Fig. 29). Coupling of the lithio derivative of bis-dithiane intermediate (28) with alkyl bromide (33), followed by desulfurization, via hydrogen and Raney nickel, gave the expected product (33). Ozonolysis of (34) gave the corresponding hydroxyether meromycolate ester, and a direct base-catalyzed ester interchange yielded the methyl meromycolate (35) (See Fig. 29).

Fig. 29: Gensler et al.'s “Carboxyl End” (34) and “Methyl Meromycolate” (36)
Further work by Gensler et al., two years later discussed improved methods in the preparation of a meromycolic acid (36) (See Fig. 30), where they utilised Grignard reactions to couple intermediates.177 Gensler et al. were successful in preparing the first meromycolic acid, however the two cis-cyclopropane groups were not in a definitive stereochemistry, therefore they were present as a mixture of four stereoisomers.

![Diagram](36)

\textit{Fig. 30: Gensler et al.'s "Meromycolic acid"}

The first enantiomerically pure meromycolic acid was prepared by M.S. Baird et al. in 2000, where they set about preparing single enantiomers of cyclopropane intermediates and then successfully coupled the intermediates together with no loss of stereochemistry.178 Coxon et al. had discussed the synthesis of single enantiomers of cyclopropane intermediates earlier in 1999, and Baird et al. exploited this to obtain the first enantiomerically pure meromycolic acid (See Fig. 31).179 The work by Baird et al. pioneered the synthesis of other enantiomerically pure meromyculates.180
Baird et al. successfully synthesized a single enantiomer of α-mycolic acid, containing two cis-cyclopropane rings.181 Baird et al. went about preparing a branched hydroxy acid aldehyde, so that they could then couple this to a meromycolate sulfone using a modified Julia-Kocienski olefination that they utilised during the preparation of their meromycolic acid.178 The branched hydroxy acid was prepared by a Grignard ring opening of the epoxide (45) with 9-bromononan-1-ol tetrahydropyranyl ether to give the secondary alcohol (46). This was then transformed into (47), an alkylation of (47) and protection of the primary alcohol to the tert-butyl diphenyl silyl ether giving (48). Protection of the secondary alcohol to the acetate, then deprotection of the tert-butyl diphenyl silyl ether and oxidation yielded the branched hydroxy acid aldehyde (49) (See Fig. 32).181
Using similar procedures to those used to obtain their first meromycolic acid, Baird *et al.* prepared the meromycolate sulfone (50). Coupling of this sulfone (50) to the branched hydroxy acid aldehyde (49), and mild hydrogenation with potassium azodicarboxylate gave the first enantiomerically pure α-mycolic acid (51) (See Fig. 33).178,181

Baird *et al.* were able to use these techniques to develop methods for other mycolates, and they later discussed the synthesis of S,S-oxygenated mycolates, obtainable from *L*-ascorbic acid (52).182-184 The procedure reported is a multi-stage
synthesis to obtain the key intermediate (56), key stages in the synthesis are the Michael addition of the methyl across the double bond of (53), to give (54); and the formation of the epoxide (55). It is possible to prepare hydroxy (57), keto (58) and methoxy (59) mycolic acids from the tert-butyl dimethyl silyl ether (56) (See Fig. 34).

\[
\begin{align*}
&\text{(52)} & \text{(53)} & \text{(54)} & \text{(55)} & \text{(56)} & \text{(57)} & \text{(58)} & \text{(59)} \\
&\text{OH} & \text{MeO} & \text{MeO} & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), \\
&\text{OH} & \text{OH} & \text{OH} & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), & \text{CH}_3(CH_2), \\
&\text{\textit{\alpha}-O} & \text{O} & \text{O} & \text{OSiMe}_2\text{Bu} & \text{(CH}_2)_b\text{OTHP} & \text{(CH}_2)_b\text{R} & \text{(CH}_2)_b\text{R} & \text{(CH}_2)_b\text{R} \\
&\text{OH} & \text{OH} & \text{OH} & \text{OH} & \text{CH}_3(CH_2)_c & \text{CH}_3(CH_2)_c & \text{CH}_3(CH_2)_c & \text{CH}_3(CH_2)_c \\
&\text{a} = 15, 17, 18, 19 & \text{b} = 10, 14, 16 & \text{c} = 11, 15, 17, 19, 21 & \text{d} = 21, 23 & \\
\end{align*}
\]

Fig. 34: Baird et al.'s preparation of \textit{S,S}-oxygenated mycolates
They also report the preparation of \(R, R \)-oxygenated mycolates in a similar fashion, following intermediates (61), (62) and (63), however starting from \(D \)-mannitol (60). It is again possible to retain the configuration of the distal position of (64) in the preparation of mycolic acids containing (65), (66) and (67) (See Fig. 35).\(^{182,184}\)

![Diagram of the preparation of \(R, R \)-oxygenated mycolates](image)

Fig. 35: Baird et al.'s preparation of \(R, R \)-oxygenated mycolates
Baird et al. also conducted an improved synthesis of the α-alkyl β-hydroxy unit (82), where they were able to start from very simple materials to prepare the cis-olefin (75). It is possible to obtain the aldehyde (80) in a multi-stage synthesis via the diol (76), sulfone (77), methyl ester (78) and olefin (79) (See Fig. 37).
The α-alkyl branch is twenty four carbons long in (81) and (82). However in this new strategy the aldehyde (80) generated allows the introduction of any chain length desired at the α-position, via a modified Julia-Kocienski olefination. Baird et al. suggested that one would be able to add a labelled group at this position; this would possibly help gain a further understanding into the folding/conformational behaviour of mycolic acids.

Baird et al. have made a considerable contribution to the area of complete synthesis of mycolic acids, where they have published several routes to obtain enantiomerically pure mycolic acids.⁹⁶, ¹⁵³, ¹⁷⁸, ¹⁸⁰-¹⁸⁴, ¹⁸⁷, ¹⁸⁸
Chapter 2 - Results and Discussion

2.1 – Project aims

This project is comprised of two main areas, the synthesis of two methoxy-mycolic acids of *Mycobacterium tuberculosis* and hydroxy and keto-mycolic acids of *Mycobacterium marinum*. The target molecules from *Mycobacterium tuberculosis* are cis-cyclopropane methoxy-mycolic acid (83) and α-methyl trans-cyclopropane methoxy-mycolic acid (84) (See Fig. 38).

![Fig. 38: Targeted mycolic acids of M.Tb](image)

Protected α-methyl *trans*-alkene keto (85), *R*-α-methyl *trans*-alkene keto-mycolic acid (86) and both enantiomers of α-methyl *trans*-alkene hydroxy (87) and (88) (See Fig. 39) from *Mycobacterium marinum* were also selected as molecules for study.

The mycolic acids synthesised in this project will help towards development of detection methods for tuberculosis, discovery of a replacement for Freund’s adjuvant, possible therapies in treating asthma and to gain a better understanding of the impact of function on mycobacteria.
2.2 – Synthesis of cis-cyclopropane methoxy-mycolic acid (83)

Work previously carried out by J.R. Al-Dulayymi et al. described the complete syntheses of three out of four of the major methoxy-mycolic acids of *M. Tb.* It was decided to undertake the synthesis of the final methoxy-mycolic acid missing from this set of isomers. The three completed methoxy-mycolic acids contain cyclopropane rings with both *S,R* and *R,S* configurations in the proximal position, and with the methoxy and methyl of the distal position in *S,S* and *R,R* configurations. (See Fig. 40).
2.2.1 – Retrosynthesis of cis-cyclopropane methoxy-mycolic acid (84)

Following the general methods of mycolic acid synthesis developed by J.R. Al-Dulayymi et al., retrosynthesis suggests synthesising a meromycolate moiety (89) and branched hydroxy acid (90) separately (See Fig. 41) as the two main coupling fragments.

Fig. 41: Meromycolate moiety and branched hydroxy acid disconnection
The meromycolate moiety (89) can be separated further into two known fragments as published by J.R. Al-Dulayymi et al., accounting for the distal and proximal positions (See Fig. 42) giving a S,S α-methyl methoxy unit (91) and a R,S cis-cyclopropane ring (92).

![Fig. 42: Meromycolate disconnection](image)

Preparation of the branched hydroxy acid fragment (90) could be carried out by the following method (See Fig. 43).

![Fig. 43: Branched hydroxy acid retrosynthesis](image)

2.2.2 – Preparation of the distal S,S α-methyl methoxy unit

The S,S α-methyl methoxy unit intermediate (93) used in this project was previously synthesised by the author. Intermediate (93) can be achieved in multi-gram quantities, following literature methods discussed previously in section 1.4.3 (See page 37).
Fig. 44: 2-((8S,9S)-8-Methoxy-9-methylheptacosyloxy)tetrahydropyran (93)

The tetrahydropyranyl acetal (93) can be readily converted into sulfone (91), via intermediates (94) – (100), following a literature method as described by J.R. Al-Dulayymi et al. (See Fig. 45). The data obtained whilst conducting these methods can be seen in Appendix 1 to Appendix 11.
To obtain the correct chain length between distal and proximal positions, it was decided that a series of modified Julia-Kocienski reactions could be used to connect distal and proximal positions.

The tetrahydropyranloxy group of the \(S,S \) \(\alpha \)-methyl methoxy unit (93) was then deprotected with \(p \)-toluenesulfonic acid to give the primary alcohol (94), which was then oxidised to the corresponding aldehyde (95), using pyridinium chlorochromate (See Fig. 46).

The conversion of the THP protected compound (93) through to the aldehyde (94) was followed by \(^1H \) NMR spectroscopy. The \(^1H \) NMR of the tetrahydropyranyloxy compound (93) showed characteristic signals for the protecting group, including a triplet at \(\delta \) 4.58 for the acetal proton, a multiplet between \(\delta \) 3.93 and 3.86 corresponding to the \(CH_2 \) adjacent to the oxygen of the ring, and a doublet of triplets at \(\delta \) 3.75.

Upon deprotection of the THP group, these signals, as expected were lost and a broad singlet at \(\delta \) 1.52 was observed for the hydroxyl group. After oxidation a triplet at \(\delta \) 9.82 (J 1.90 \(H_2 \)) corresponding to the aldehyde proton and a doublet of triplets for the \(CH_2 \) adjacent (J 1.90, 7.30 \(H_2 \)) were observed.

Following the disconnection route discussed earlier, an eight carbon sulfone with a protected hydroxyl group was required to connect the distal and proximal
groups. This was done by taking commercially available 1,8-octanediol (101) and carrying out a bromination of one hydroxyl group using hydrobromic acid at reflux, to give the mono-bromo alcohol (102). A protection of the hydroxyl group was then carried out using trimethylacetyl chloride to give the tert-butyl ester bromide (103). This was then converted into the corresponding sulfide (104), using 1-phenyl-1H-tetrazole-5-thiol and potassium carbonate. Oxidation of the sulfide with ammonium molybdate (VI) tetrahydrate and hydrogen peroxide yielded the sulfone (96) (See Fig. 47).

\[
\begin{align*}
\text{HO(CH}_2\text{)}_{8}\text{OH} & \quad \overset{\text{a)} \quad \text{Br(CH}_2\text{)}_{8}\text{OH}}{\rightarrow} \quad \text{(101)} \quad \text{(102)} \\
\text{c) } & \quad \text{Br(CH}_2\text{)}_{8}\text{OPv} \\
\text{d) } & \quad \text{(104)} \\
\text{II } & \quad \text{Ph} \\
\text{Ph} & \quad \text{N'N} \\
\text{N} & \quad \text{S} \\
\text{N} & \quad \text{(96)} \\
\end{align*}
\]

Fig. 47: a) HBr, (81 %); b) (CH\textsubscript{3})\textsubscript{3}CCOCI, (85 %); c) 1-phenyl-1H-tetrazole-5-thiol, K\textsubscript{2}CO\textsubscript{3}, (74 %); d) ammonium molybdate (VI) tetrahydrate, H\textsubscript{2}O\textsubscript{2}, (96 %)

The \(^1\text{H}\) NMR spectrum of (96) showed a multiplet between \(\delta 7.61\) and 7.50 corresponding to the 5 aromatic protons, and a triplet at \(\delta 3.40\) for the CH\textsubscript{2} adjacent to the sulfur.

With the sulfone and aldehyde now prepared it was possible to carry out a modified Julia-Kocienski reaction. The procedure is based on a method derived by M. Julia et al., called the Julia olefination.190 Work carried out by P.J. Kocienski et al. on the modification of this method has led it to becoming an important reaction in organic synthesis.191 The method goes via metellation of the phenylsulfone, acylation of the aldehyde to give a β-alkoxysulfone, followed by a reductive elimination to give a mixture of alkene products (See Fig. 48).
From the modified Julia-Kocienski olefination of sulfone (96) and aldehyde (95), a mixture of alkenes (105) was obtained using lithium bis(trimethylsilyl) amide as a base. The alkenes were then hydrogenated at atmospheric pressure using palladium on charcoal (10 %) to give (106) (See Fig. 49).
The olefination was confirmed by 1H NMR spectroscopy of (105), with the product showing all expected signals, most notably 2 multiplets present in the olefinic region. Upon hydrogenation these signals were no longer present in (106).

The tert-butyl ester (106) was reduced using LiAlH$_4$ to give the hydroxy compound (107), where potassium hydroxide was used in the original literature. However, although the reaction was a success, there was no significant benefit from using this method as the recorded yield was lower, hence the method from the literature should be preferred for reduction of the ester (107).182 Compound (107) was brominated using N-bromosuccinimide in the presence of sodium hydrogen carbonate to give the bromide (108). The corresponding sulfone (109) was then prepared using the same method that was used to prepare the C$_8$ sulfone (91) (See Fig. 50).

![Chemical structures](image)

Fig. 50: a) LiAlH$_4$, (79 %); b) NBS, PPh$_3$, NaHCO$_3$, (84 %); c) 1-phenyl-1H-tetrazole-5-thiol, K$_2$CO$_3$, (93 %); d) ammonium molybdate (VI) tetrahydrate, H$_2$O$_2$, (87 %)
Bromination of the primary alcohol (107) was confirmed via 1H NMR, which showed a change in chemical shift of the triplet corresponding to the CH$_2$ adjacent to the alcohol. It is observed that the triplet of the CH$_2$ adjacent to the alcohol (107) at δ 3.72 (J 6.65 Hz) is shifted upfield to δ 3.44 (J 7 Hz); in addition the broad singlet at δ 1.48 for the hydroxyl group of the alcohol is no longer present after bromination, further confirming completion of the reaction. Preparation of sulfide (109) and sulfone (91) was confirmed as before with compounds (104) and (96).

2.2.3 - Preparation of the proximal cis-cyclopropane ring

To prepare the cis-cyclopropane ring required the following procedure was derived from the disconnection route discussed on page 45.

![Diagram of the preparation of cis-cyclopropane intermediate (118)](image)

Fig. 51: Preparation of cis-cyclopropane intermediate (118)
Having successfully synthesised the distal S,S motif, it was required to prepare a cis-cyclopropane ring in the R,S configuration. This was prepared by a standard method starting from methyl acrylate, methyl chloroacetate and sodium methoxide yielding the diester (110) in a Michael Induced Ring Cyclisation. The mechanism of the cyclisation is initiated by the deprotonation of methyl chloroacetate using a base, then the carbanion undergoes a Michael addition across the double bond of the methyl acrylate, which then spontaneously ring closes (See Fig. 52).

The diester (110) was then reduced using lithium aluminium hydride, following the same mechanistic route as compound (106), to yield to diol (111). This was in turn protected with butyric anhydride to give the dibutyrate (112) (See Fig. 53).
It was then necessary to prepare a monoester from the diester (112). This was carried out using a method reported by Grandjean et al.193 The method gives an enantiomerically pure cis-cyclopropane monoester (113) using crude lipase extracted from pig pancreas (See Fig. 54). The reaction was carried out under pH control, as a side product of the hydrolysis is butyric acid, which would lead to full hydrolysis giving the diol (111). Therefore to prevent this, pH was maintained via addition of 1M aq. sodium hydroxide at 6.5. The optical purity of the monoester, (1R,2S)-2-hydroxymethyl-cyclopropylmethyl ester (113) obtained was confirmed by its optical rotation giving a value of +17.4, which was in accordance with the literature value of +18.2.193
The monoester (113) was also characterised by its 1H NMR spectra. Where the splitting pattern observed for the cis-cyclopropane ring is in accordance with that reported in the literature.

The alcohol group of (113) was then brominated using N-bromosuccinimide and triphenylphosphine to give the bromoester (114), in good yield (90 %). The 1H NMR spectrum of butyric acid (1R,2S)-2-bromomethyl-cyclopropylmethyl ester (114) confirmed the success of the reaction, with the two doublet of doublets corresponding to the CH$_2$ adjacent to the hydroxyl group of the starting material no longer observed, with the two doublet of doublets at δ 3.52 and δ 3.40, corresponding to the CH$_2$ adjacent to the bromide, now present. The bromide (114) was then converted to the corresponding sulfide (115) and then sulfone (116) in similar procedures as previously discussed with compound (91) (See Fig. 55).

\[\text{HO Pr} \rightarrow \text{Br Pr} \]

Fig. 55: a) NBS, Ph$_3$P, NaHCO$_3$, (90 %); b) 1-phenyl-1H-tetrazole-5-thiol, K$_2$CO$_3$, (95 %); c) ammonium molybdate (VI) tetrahydrate, H$_2$O$_2$, (97 %)
To give the correct stereochemistry of the cyclopropane in the final mycolic acid it was necessary to chain extend from the sulfone (116) and then deprotect the ester, oxidise the resultant alcohol and couple to the sulfone (91). Hydrogenation of the resultant olefins gives the previously unsynthesized (119) (See Fig. 56).

Fig. 56: Generation of R,S cis-cyclopropane stereochemistry

To prepare the cis-cyclopropane bromide (92) it was necessary to synthesise an aldehyde to couple to sulfone (116). 1,6-Hexanediol (120) was brominated using hydrobromic acid to give 6-bromohexan-1-ol (121), which was then oxidised to the aldehyde (117), using PCC (See Fig. 57). 182
This aldehyde (117) was then coupled to the previously prepared *cis-*cyclopropane sulfone (116) using lithium bis(trimethylsilyl)amide as a base, using the modified Julia-Kocienski reaction to give the olefin product (122) as an *E/Z* mixture. The olefin (122) was then hydrogenated; usually this is done using a palladium catalyst, however, in this case hydrogenation using a palladium catalyst would cause ring opening of the cyclopropane. Therefore hydrogenation was carried out using 2,4,6-triisopropyl-benzenesulfonyl hydrazide, so that the cyclopropane ring was maintained, giving butyric acid (1R,2S)-2-(7-bromoheptyl)cyclopropylmethyl ester (118) (See Fig. 58).
2,4,6-Triisopropyl-benzenesulfonyl hydrazide was prepared from 2,4,6-triisopropyl-benzenesulfonyl chloride and hydrazine hydrate, following a method discussed by L. Friedmann (See Fig. 59).194 Hydrogenation of an alkene using di-imide goes via the following mechanism (See Fig. 60).

![Fig. 59: Preparation of 2,4,6-triisopropyl-benzenesulfonyl hydrazide](image)

![Fig. 60: Hydrogenation of an alkene with di-imide mechanism](image)

The preparation of the six carbon aldehyde (117) and the cis-cyclopropane bromide (118) was monitored using 1H NMR spectroscopy. 6-Bromohexan-1-ol (121) gave triplets at \(\delta \) 3.67 and \(\delta \) 3.43, corresponding to the CH\(_2\)'s adjacent to the bromide and hydroxyl groups, respectively, with three pentets occurring upfield corresponding to the 3 other CH\(_2\)'s. Upon oxidation of the alcohol group of (121), a triplet is observed at \(\delta \) 9.78 corresponding to the aldehyde proton of (117). The CH\(_2\) adjacent to the aldehyde shows a distorted triplet at \(\delta \) 2.47; this is because the CH\(_2\) is being split by the CH\(_2\) adjacent to it and the aldehyde proton.

2.2.4 - Preparation of the meromycolate moiety

The butyl ester (117) was then removed using potassium carbonate to give (1\(R,2S \))2-(7-bromoheptyl)cyclopropyl methanol (123), which was then oxidised
using PCC to give the aldehyde (92). Compound (92) was then coupled to the previously prepared sulfone (92) in a modified Julia-Kocienski olefination, followed by hydrogenation using dipotassium azodicarboxylate to give the bromide (119), (1S,2R)-1-(7-bromoheptyl)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) cyclopropane (See Fig. 61).

![Chemical Structure Diagram]

Fig. 61: a) K$_2$CO$_3$, (92 %); b) PCC, (51 %); c) LIIMDS, (72 %); d) (NCOO$^-$)$_2$, CII$_3$COOH, THF, (66 %)

As the cyclopropane (119) is a new compound its structure was confirmed using 1H NMR, 13C NMR, IR, melting point and MALDI-MS, comparing against a literature reference for the opposite configuration (124) as prepared by J. R. Al-Dulayymi et al. (See Fig. 62).
The 1H NMR of (119) was analysed to contribute to the confirmation of its structure (See Fig. 63).

<table>
<thead>
<tr>
<th>H_x</th>
<th>δ</th>
<th>Multiplicity</th>
<th>Integration</th>
<th>J (H_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_a</td>
<td>3.42</td>
<td>t</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>H_b</td>
<td>3.34</td>
<td>s</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>H_c</td>
<td>2.99-2.93</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_d</td>
<td>1.66-1.61</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_e</td>
<td>0.9</td>
<td>t</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>H_f</td>
<td>0.88</td>
<td>d</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>H_g</td>
<td>0.75-0.65</td>
<td>m</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>H_h</td>
<td>0.61</td>
<td>dt</td>
<td>1</td>
<td>4, 8</td>
</tr>
<tr>
<td>H_i</td>
<td>-0.33</td>
<td>q</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 63: 1H NMR data of methoxy-mycolic acid intermediate (119)
The 1H NMR data of the $S,S-R,S$ isomer (119) matched that of the $R,R-S,R$ isomer (124).182

The two proton multiplet shown between δ 0.75 and δ 0.65 arises from the two CH groups of the cyclopropane ring and the doublet of triplets and quartet correspond to the CH$_2$ within the cyclopropane ring at δ 0.61 (cis of the CH$_2$) and δ -0.33 (trans of the CH$_2$) (See Fig. 64).

![Fig. 64: Cyclopropane 1H NMR signals](image)

Also, as expected, the 13C NMR, IR, MALDI-MS and melting point matched the literature for the opposite isomer (124),182 hence confirming the structure of (119). The optical rotation confirmed that the predicted stereochemistry of (119), -3.4, was correct, with the literature value for the opposite enantiomer (124) being +5.5.182

The bromide (119) was then converted into the corresponding sulfide (125) using 1-phenyl-1H-tetrazol-5-thiol and potassium carbonate, and the sulfide (125) was oxidised using m-chloroperoxybenzoic acid to give the tetrazole sulfone (89) (See Fig. 65).
The preparation of sulfone (89) was followed primarily using 1H NMR, with all relevant data also being collected to fully characterise the compounds. The 1H NMR of (89) as expected exhibited similar characteristics to those of the previously prepared sulfones. It is worth noting that when the sulfide was oxidised to the sulfone, the CH$_2$ adjacent to the sulfur showed a unique splitting pattern. The signal observed is a characteristic AA'BB' system. This occurs when the two CH$_2$'s adjacent to a substituent have non-magnetically equivalent protons. This can be shown by a Newman Projection, where H$_A$ will show cis-splitting to H$_B$ and trans-to H$_B'$ (See Fig. 66 and 67).
2.2.5 – Preparation of the branched hydroxy acid

To obtain the cis-cyclopropane methoxy-mycolic acid (83), it was necessary to couple a branched hydroxy acid to the meromycolate sulfone intermediate (89). The branched hydroxy acid aldehyde intermediate (90) was obtained following the disconnection route previous discussed on page 45 (See Fig. 68).
The aldehyde (90) was prepared using the intermediate (126) contributed by Cornelia Theunissen. The benzyl protected alkene (126) was hydrogenated and deprotected in a single step procedure to yield the silyl protected methyl ester, (R)-2-[(R)-1-(tert-butyldimethylsilanyloxy)-3-hydroxypropyl]-hexacosanoic acid methyl ester (127). This was done via a hydrogenation using hydrogen and a palladium catalyst at atmospheric pressure over 72 hours (See Fig. 69).

The structure of compound (127) was confirmed primarily using 1H NMR, with the product no longer showing signals for the benzyl group and the olefin in its spectrum. The primary alcohol group was then oxidised using PCC to give the corresponding aldehyde (128) using the methods previously described by J.R. Al-Dulayymi et al. (See Fig. 70).
Again the structure of the product was confirmed using 1H NMR, with a triplet observed at δ 9.81 corresponding to the aldehyde proton. To give the correct chain length between the meromycolate sulfone intermediate (89) and the hypothesized aldehyde branched hydroxy acid intermediate (90), an eight carbon chain was required. The previously discussed 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) was used in a modified Julia-Kocienski olefination to give the previously unsynthesized alkene mixture (129), which was hydrogenated at atmospheric pressure using a palladium catalyst to give the tert-butyl ester (130) (See Fig. 71). The structure of the ester (130) was confirmed primarily using 1H NMR (See Fig. 72).

![Chemical structure](image-url)
The aldehyde (90) was prepared by first deprotecting the tert-butyl ester (130) using potassium hydroxide in THF, methanol and water at reflux. The oxidation of the resultant primary alcohol (131) was carried out using PCC (See Fig. 73).
2.2.6 – Coupling the meromycolate moiety and branched hydroxy acid

A modified Julia-Kocienski olefination was carried out on the meromycolate sulfone intermediate (89) and the branched hydroxy acid aldehyde (90) using lithium bis(trimethylsilyl)amide as the base to give the alkene mixture (132), which was hydrogenated using dipotassium azocarboxylate to give the protected cis-cyclopropane methoxy-mycolic acid (133) (See Fig. 74).
The protected cis-cyclopropane methoxy-mycolic acid (133) was characterised using 1H and 13C NMR, IR, optical rotation and MALDI-MS. MALDI-MS was not recorded for J.R. AL-Dulayymi et al.’s diastereoisomer (134) (See Fig. 75), however the value recorded for (133) was correct when compared to the expected theoretical value. The IR and $[\alpha]_D$ were in accordance with the expected values in comparison to (133)’s different configuration to (134) (See Fig. 76). The 1H and 13C NMR data of ester (133) was analysed as follows (See Fig. 77 and 78).

![Chemical Structure](image)

Fig. 75: cis-Cyclopropane methoxy-mycolic acids (133) and (134)

<table>
<thead>
<tr>
<th></th>
<th>(133)</th>
<th>(134)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>2921, 2876, 1763, 1465, 1102</td>
<td>2922, 2852, 1740, 1465, 1099</td>
</tr>
<tr>
<td>$[\alpha]_D$</td>
<td>6.16</td>
<td>-4.4</td>
</tr>
<tr>
<td>MALDI-MS</td>
<td>(M+Na$^+$) 1404.25 (requires: 1404.39)</td>
<td>not measured</td>
</tr>
</tbody>
</table>

Fig. 76: IR, $[\alpha]_D$ and MALDI-MS data comparison for (133) and (134)
Fig. 77: 1H NMR data analysis of protected cis-cyclopropane methoxy-mycolic acid (133)
Deprotection of the tert-butyl dimethylsilyl group in (133) was done using hydrofluoric acid in pyridine, to give the cis-cyclopropane methoxy-mycolic acid methyl ester, (135). The methyl ester was then hydrolysed using lithium hydroxide in THF, methanol and water to give the acid (83) (See Fig. 79).
The successful formation of mycolic acid (83) was confirmed primarily using 1H NMR, with the corresponding signals no longer being observed for the tert-butyl dimethylsilyl group (H₆, H₁ and H₃) and methyl ester (H₅). Also, in the 13C NMR spectrum, the signals corresponding to the tert-butyl dimethylsilyl group (C₀, C₆, C₆ and C₂) and methyl ester (C₁) were no longer present. The MALDI-MS of the final compound (83) was found to be correct, M-Na⁺: 1277.23 for C₈₅H₁₆₈O₄Na (requires: 1277.27). In addition the specific rotation of (83) was measured, giving a value of +1.17. The specific rotation can be converted into a molecular rotation, M_D. M_D is calculated from the measured specific rotation (α₀) and the molecular weight of the sample, where:

$$M_D = \alpha_D \times (\text{Mol. Wt/100})$$

Fig. 79: a) HF, pyr, pyridine, (79 %); b) LiOH, THF/MeOH/H₂O, (63 %)
When the chiral group is present in the centre of two very long chains, the molecular rotation for a particular absolute stereochemistry is largely independent of the chain length and so provides an incremental value that can be used to predict M_D and therefore α_D for a molecule containing several such chiral groups. Calculating theoretical values for M_D is only plausible when the chiral centre is present in the centre of two long carbon chains as the overall effects on molecular rotation remain similar to the complete mycolic acid, following the Cahn-Ingold-Prelog priority rules. Hence this method is not plausible in small molecules as the effect on molecular rotation will be considerably different to the complete compound.

M_D for (83) was calculated at +14.67, Al-Dulayymi et al. recorded the optical rotations for (136) and (137) where M_D’s are calculated at -13.42 and +87.17 respectively.\(^{182}\)

\[
M_D (136) = -1.07 \times \left(\frac{1254.24}{100}\right) = -13.42 \\
M_D (137) = +6.95 \times \left(\frac{1254.24}{100}\right) = +87.17
\]

Therefore it is possible to determine the contribution of each chiral centre, where the difference between (83) and (136) is +28.09, which accounts for the effect of the two different configurations of the cis-cyclopropane. The difference between (136) and (137) is +100.59, caused by the distal methyl and methoxy groups. Unfortunately Al-Dulayymi et al. did not discuss the hydrolysis of (138); however, theoretically, it would now be possible to calculate the expected M_D and α_D for the 4\(^{th}\) configuration, where M_D would be expected at +115.26. Al-Dulayymi et al. did give specific rotations for compound (138) where calculated M_D is +100.76.

\[
M_D (138) = +7.69 \times \left(\frac{1310.30}{100}\right) = +100.76
\]
The theoretical values calculated are from Al-Dulayymi et al. and the author’s synthetic compounds show us that it is possible to estimate expected rotations for synthetic compounds.

Quémard et al. discussed the use of mycolic acid fragments in determining the overall molecular rotation of the complete mycolic acid, and hence an expected optical rotation for the compound. They calculated individual contributions from each chiral centre present and the sum of this gave the expected molecular rotation (See Fig. 80).135
| Molecule | M_D | Configuration of the chiral centre carrying the | | | | | | \(\text{distal Me branch} \) | \(\text{oxygenated function} \) | \(\text{proximal Me branch} \) | \(C_3 \) | \(C_2 \) |
|-------------------------|-------|---|---|---|---|---|---|---|---|---|
| \(\alpha \)-mycolate | | | | | | | | | | |
| BCG | +37 | | | | | | | | | R | R |
| smegmatis 155 | +12 | | | | | | | | | R | R |
| | | | | | | | | | | | |
| Ketomycolate | | | | | | | | | | | |
| BCG | | | | | | | | | | | |
| epimerized | +42 | | | | | | | | | R | R |
| non-epimerized | +77 | | | S | | | | | | R | R |
| smegmatis MJ95(epimerized) | +19 | | | | | | | | | R | R |
| | | | | | | | | | | | |
| Hydroxymycolate | | | | | | | | | | | |
| BCG | 0 | | S | S | | | | | | R | R |
| smegmatis MJ95 | -16 | | S | S | R | | | | | R | R |
| | | | | | | | | | | | |
| Branched hydroxy acid | | | | | | | | | | | |
| 15-Me hetriaconta | | | | | | | | | | | |
| -16-one | +44 | | S | | | | | | | | |
| 15 Me hetricontan | | | | | | | | | | | |
| -16-ol | -43 | | S | S | | | | | | | |

Fig. 80: Quémard et al.'s molecular rotation's135

Full 1H NMR expansions of cis-cyclopropane methoxy-mycolic acid (83) can be seen as follows (See Fig. 81a, 81b, 81c and 81d).
The regions of the 1H NMR spectrum of (83) which are of most interest are between δ 0.66 to -0.34, which correspond to the four protons of the cis-cyclopropane ring, and δ 3.77-1.71, which includes a three hydrogen singlet at δ 3.35 for the methoxy group. The signal for H_a was a broad doublet of triplets; the broadness of this signal shown at δ -0.31 to -0.34 is possibly because H_c and H_c' are not magnetically identical and the signal observed is actually a double doublet of doublets, but due to the signals being at a near identical chemical shift it appears as a doublet of triplets. H_a, theoretically should show a doublet of triplets; however, due to the difference in magnetism of H_c and H_c', the signal at δ 0.58-0.54 is distorted. H_c and H_c' again showed a distorted multiplet at δ 0.66-0.64 for the same reason, where theoretically they should show a double doublet of triplets.
H_d should show a doublet of triplets, however the signal at δ 1.75-1.71 is distorted. H_c shows to exhibit a doublet of triplets as seen at δ 2.48-2.44, which is consistent with the expected theoretical splitting pattern. H_f and H_g are seen at δ 2.99-2.96 and δ 3.77-3.69, due to their adjacency to the β-hydroxy and methoxy respectively. As H_f and H_g are diastereotopic protons, the splitting patterns observed are slightly distorted due to differing magnetic properties of the protons which are adjacent to them.

Fig 81c: 1H NMR spectrum of (83) δ 2.6 to δ 1.0

Fig 81d: 1H NMR spectrum of (83) δ 4.2 to δ 2.6
2.3 – Synthesis of α-methyl trans-cyclopropane methoxy-mycolic acid (84)

The preparation of α-methyl trans-cyclopropane mycolic acids has been previously discussed. Using the methods described in the literature along with methods discussed in this thesis it was possible to prepare α-methyl trans-cyclopropane methoxy-mycolic acid (84) (See Fig. 82).

Fig. 82: (R)-2-((R)-1-Hydroxy-19-((1S, 2R)-2-((2S, 18S, 19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl)hexacosanoic acid (84)

2.3.1 – Retrosynthesis of α-methyl trans-cyclopropane methoxy-mycolic acid (84)

Fig. 83: Disconnection route for α-methyl trans-cyclopropane methoxy-mycolic acid (84)
The α-methyl trans-cyclopropane methoxy-mycolic acid (84) can be prepared via a similar disconnection method to the cis-cyclopropane methoxy-mycolic acid (83) (See Fig. 83) The meromycolate aldehyde (139) was separated into its proximal and distal moieties, and branched hydroxy acid sulfone (140) (See Fig. 84). The distal S,S α-methyl methoxy unit (141) was prepared as before, however the α-methyl trans-cyclopropane unit (142) was prepared, via intermediate (143) – (145), following the retrosynthesis in Fig. 85.

Fig. 84: Disconnection route for meromycolate aldehyde (139)

Fig. 85: Disconnection route for α-methyl trans-cyclopropane unit (142)
2.3.2. *Preparation of the distal S,S α-methyl methoxy unit (140)*

The α-methyl methoxy sulfone (140) was prepared using methods similar to those used when preparing (92); however, to obtain the 14 carbon chain, required to connect to the α-methyl trans-cyclopropane unit (141), a seven carbon sulfone was used rather than an eight carbon sulfone (See Fig. 86).

![Chemical Structures](image)

Fig. 86: a) i) LIMDS, (81 %); ii) H2, Pd. cat., (88 %); b) LIAH4, (79 %); c) NBS, PPh₃, NaHCO₃, (83 %); d) 1-phenyl-1H-tetrazole-5-thiol, K₂CO₃, (93 %); e) m-CPBA, NaHCO₃, (89 %)
The structure and stereochemistries of the sulfone (141) were confirmed using 1H NMR (See Fig. 87), 13C NMR (See Fig. 88), infra-red and optical rotation.

![Chemical structure of 5-((15S,16S)-15-methoxy-16-methyltetraacontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141)]

<table>
<thead>
<tr>
<th>H_x</th>
<th>δ</th>
<th>Multiplicity</th>
<th>Integration</th>
<th>$J (H_x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_a</td>
<td>7.71-7.70</td>
<td>m</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>H_b</td>
<td>7.69-7.61</td>
<td>m</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>H_c</td>
<td>3.74</td>
<td>t</td>
<td>2</td>
<td>7.9</td>
</tr>
<tr>
<td>H_d</td>
<td>3.34</td>
<td>s</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>H_e</td>
<td>2.97-2.95</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_f</td>
<td>1.96</td>
<td>pent</td>
<td>2</td>
<td>7.9</td>
</tr>
<tr>
<td>H_g</td>
<td>1.63-1.58</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_h</td>
<td>0.89</td>
<td>t</td>
<td>3</td>
<td>6.6</td>
</tr>
<tr>
<td>H_i</td>
<td>1.60</td>
<td>d</td>
<td>3</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Fig. 87: 1H NMR data analysis of 5-((15S,16S)-15-methoxy-16-methyltetraacontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141)
The infra-red spectrum was identical to that of the previously prepared sulfone (141), as expected due to a variance of only one carbon in chain length. Also the optical rotation of the two molecules was very similar, that for sulfone (141) being -6.28 and for sulfone (91) -6.32; this was also expected due to the similarity of the two compounds (See Fig. 90). The molecular rotations for both compounds were calculated giving $\text{MD} = -45.92$ for (141) and $\text{MD} = -47.10$ for (91), as expected the two values are very similar as the additional CH$_2$ group of (91) has no effect on MD.

Fig. 88: 13C NMR data analysis of 5-((15S,16S)-15-methoxy-16-methyltetraaccontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141)
2.3.3 – Preparation of the α-methyl trans-cyclopropane unit (142)

To successfully prepare the α-methyl trans-cyclopropane methoxy-mycolic acid (84), it was necessary to synthesise a meromycolate moiety with an α-methyl trans-cyclopropane. To obtain the desired 16 carbon chain bridging the proximal and distal functionalities, the α-methyl trans-cyclopropane unit required a two carbon chain with an aldehyde functional group adjacent to the methyl substituent. It was also decided to introduce a chain to the other side of the cyclopropane to contribute to the 18 carbon chain connecting the meromycolate moiety and the branched hydroxy acid as shown previously in Fig. 84. The α-methyl cis-cyclopropane unit (145) was contributed by Matthew Love, following methods as described by J. R. Al-Dulayymi et al.,153,156 and the following procedures were followed to obtain the desired compound (142) (See Fig. 90).
The α-methyl cis-cyclopropane unit (145) was converted into the trans-configuration (144) using sodium methoxide in refluxing methanol over a period of 56 hrs. This was carried out on 8.93 g of the cis-compound, giving 4.90 g of the trans-product and 0.93 g of the desilyated trans-compound (152). The desilyated compound was re-protected using tert-butyldiphenylsilylchloride to give 2.30 g of the α-methyl trans-cyclopropane aldehyde (144), in an overall 81 % yield (See Fig. 91).
The success of the epimerisation reaction was confirmed primarily by measuring the product's optical rotation, with the cis-aldehyde (145) showing a rotation of +3.54 and the trans-aldehyde (144) showing +21.5. Also, the \(^1\)H NMR spectrum shows the proton corresponding to the aldehyde shifting upfield, from \(\delta\) 9.32 to \(\delta\) 9.00; it is also shown in the literature that the proton in the \(\alpha\)-position to the aldehyde also shifts from \(\delta\) 1.90-1.86 to \(\delta\) 0.96-0.95, as a result of this epimerisation reaction.

The \(\alpha\)-methyl trans-cyclopropane unit is distinctly different to the cis-cyclopropane unit discussed earlier. The cis-cyclopropane is found not to contain a methyl group in the \(\alpha\)-position, unlike the trans-cyclopropane, as a result this gives rise to differences in the spectroscopic data for a compound containing these groups. The difference in stereochemistry of these two functionalities also has an effect on the folding of the long carbon chains in a mycolic acid.\(^{130,143-145,147}\)

A modified Julia-Kocienski olefination was then carried out in a similar fashion as previously discussed. This reaction was carried out between trans-aldehyde (144) and 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) using lithium bis(trimethylsilyl)amide as a base to give the alkene product (153). A mild hydrogenation using a di-imide source, dipotassium azodicarboxylate and acetic acid was then carried out to yield 2,2-dimethyl-propionic acid 9-(2-[3-(tert-butyl-diphenyl-silanyloxy)-1-methyl]-cyclopropyl)-nonyl ester (143) (See Fig. 92).
The tert-butyl ester group of (143) was removed using hydrofluoric acid in pyridine to give the corresponding alcohol (151), which was then oxidised using PCC to yield the aldehyde (142) (See Fig. 93).
1H NMR spectroscopy was primarily used to confirm the completion of the above reactions. The spectrum for compound (143) included a nine hydrogen singlet at δ 1.04 corresponding to the tert-butyl group of the silyl ether, a four hydrogen multiplet between δ 7.67-7.65 and a six hydrogen multiplet between δ 7.40-7.37 corresponding to the two phenyl groups. Upon deprotection of the silyl ether, these signals were not observed in the spectrum of (151). Oxidation of (151) to the aldehyde (142) led to the distorted one hydrogen singlet at δ 9.78 corresponding to the aldehyde proton of (142).

2.3.4 – Preparation of the meromycolate moiety

A key intermediate in the synthesis of any mycolic acid is the meromycolate moiety; in the case of the α-methyl trans-cyclopropane methoxy-mycolic acid (84), the meromycolate prepared was the aldehyde, 9-((1R,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctatriacontan-2-yl)cyclopropyl)nonanal (138). The coupling of aldehyde (141) and sulfone (140) was done using lithium bis(trimethylsilyl)amide, which yielded the product (159) as a mixture of alkenes. The alkenes were hydrogenated using dipotassium azodicarboxylate to give the novel meromycolate moiety intermediate, the pivalate (157). The aldehyde (138) was prepared via a deprotection of the tert-butyl ester group of (157), then oxidising the resultant primary alcohol (158) to give the desired aldehyde. This was carried out using lithium aluminium hydride to first reduce the ester to the alcohol, (157). The aldehyde, (138) was then obtained by oxidising the primary alcohol (158) with PCC (See Fig. 94).
The aldehyde (139) was characterised via 1H NMR, 13C NMR, IR and optical rotation. The IR spectrum showed C-H stretching, 2984 and 2875 cm$^{-1}$ and C=O stretching, 1724 cm$^{-1}$. The specific rotation of the aldehyde (139) was measured at -3.45. The 1H and 13C NMR were analysed as follows (See Fig. 95 and Fig. 96).
Fig. 95: 1H NMR data analysis of (139)

<table>
<thead>
<tr>
<th>H_x</th>
<th>δ</th>
<th>Multiplicity</th>
<th>Integration</th>
<th>$J (H_x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_a</td>
<td>9.77</td>
<td>br. t</td>
<td>1</td>
<td>1.85</td>
</tr>
<tr>
<td>H_b</td>
<td>3.38</td>
<td>s</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>H_c</td>
<td>2.97-2.95</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_d</td>
<td>2.43</td>
<td>dt</td>
<td>2</td>
<td>1.85, 7.55</td>
</tr>
<tr>
<td>H_e</td>
<td>1.99-1.97</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_f</td>
<td>1.65-1.61</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_g</td>
<td>1.56</td>
<td>m</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>H_h</td>
<td>0.89</td>
<td>dt</td>
<td>6</td>
<td>2.85, 6.6</td>
</tr>
<tr>
<td>H_i</td>
<td>0.85</td>
<td>t</td>
<td>3</td>
<td>6.6</td>
</tr>
<tr>
<td>H_j</td>
<td>0.48-0.42</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_k</td>
<td>0.22-0.18</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_l</td>
<td>0.17-0.13</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>H_m</td>
<td>0.12-0.09</td>
<td>m</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
2.3.5 – Preparation of the branched hydroxy acid

It was necessary to prepare a branched hydroxy acid which would give the desired chain length in the final product. With the previously prepared α-methyl-trans-cyclopropane meromycolate moiety (139) having a nine carbon chain, a sulfone with a nine carbon chain (140) was required to obtain the α-methyl *trans*-cyclopropane methoxy-mycolic acid (84) (See Fig. 97).

<table>
<thead>
<tr>
<th>C<sub>x</sub></th>
<th>δ</th>
<th>C<sub>x</sub></th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>a</sub></td>
<td>205.1</td>
<td>C<sub>i</sub></td>
<td>31.9</td>
</tr>
<tr>
<td>C<sub>b</sub></td>
<td>85.5</td>
<td>C<sub>j</sub></td>
<td>30.5</td>
</tr>
<tr>
<td>C<sub>c</sub></td>
<td>57.7</td>
<td>C<sub>k</sub></td>
<td>30.0-22.7</td>
</tr>
<tr>
<td>C<sub>d</sub></td>
<td>43.9</td>
<td>C<sub>l</sub></td>
<td>19.7</td>
</tr>
<tr>
<td>C<sub>e</sub></td>
<td>38.1</td>
<td>C<sub>m</sub></td>
<td>18.6</td>
</tr>
<tr>
<td>C<sub>f</sub></td>
<td>37.4</td>
<td>C<sub>n</sub></td>
<td>16.5</td>
</tr>
<tr>
<td>C<sub>g</sub></td>
<td>35.4</td>
<td>C<sub>o</sub></td>
<td>14.3</td>
</tr>
<tr>
<td>C<sub>h</sub></td>
<td>32.8</td>
<td>C<sub>p</sub></td>
<td>10.5</td>
</tr>
</tbody>
</table>

Fig. 96: 13C NMR data analysis of (139)
Fig. 97: Preparation of the trans-cyclopropane methoxy-mycolic acid (84)

The sulfone (140) was prepared starting from the branched hydroxy acid aldehyde (128) and the seven carbon chain sulfone, 7-(1-phenyl-1H-tetrazol-5-ylsulfonyl) heptyl pivalate (154). A modified Julia-Kocienski olefination was carried out to give the alkene mixture (155), and this was then hydrogenated with a palladium catalyst to give methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)decyl)hexacosanoate (156) (See Fig. 98).
The \(^1\)H NMR, \(^{13}\)C NMR and IR data for the tert-butyl ester (156) were almost identical to that of the previously prepared ester (130), the only difference being for the additional CH\(_2\) group, which was measured using MALDI-MS. Also the optical rotation measured for the two compounds was similar, with that for (156) being measured at -3.64 and that for (130) at -3.21 (See Fig. 99).

The tert-butyl ester (156) was hydrolysed with potassium hydroxide to give the corresponding primary alcohol (157), which was brominated with N-bromosuccinimide and triphenylphosphine yielding the primary bromide (158). The sulfide (159) was prepared following the same procedure as previously discussed, by reaction with 1-phenyl-1H-tetrazole-5-thiol and potassium carbonate, and was then
oxidised using \textit{m}-CPBA to give the desired branched hydroxy acid sulfone intermediate (140) (See Fig. 100).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure100.png}
\caption{Fig. 100: a) KOH, (67 \%); b) NBS, Ph$_3$P, NaHCO$_3$, (76 \%); c) 1-phenyl-1H-tetrazole-5-thiol, K$_2$CO$_3$, (73 \%); d) \textit{m}-CPBA, (75 \%)}
\end{figure}

The specific rotation of the sulfone (140) was -4.85 and the IR confirmed some of the compound's functionality. Shifts at 2919 and 2848 cm$^{-1}$ corresponding to C-H stretching, 1721 cm$^{-1}$ for C=O stretching and 1484 cm$^{-1}$ for O-CH$_3$. The 1H and 13C NMR spectra were analysed as follows (See Fig. 101 and Fig. 102).
Fig. 101: 1H NMR data analysis of (140)
2.3.6 – Coupling the meromycolate moiety and branched hydroxy acid

With the desired meromycolate aldehyde (139) and branched hydroxy acid sulfone (140) synthesised it was then possible to carry out a modified Julia-Kocienski olefination, a hydrogenation of the resultant alkene and then two deprotection steps to give the α-methyl trans-cyclopropane methoxy-mycolic acid (84) (See Fig. 103).
A modified Julia-Kocienski olefination of the sulfone (139) and aldehyde (140), using lithium bis(trimethylsilyl)amide as a base gave the isomeric alkenes (160). The alkenes were mildly hydrogenated using dipotassium azodicarboxylate and acetic acid to give the protected α-methyl trans-cyclopropane methoxy-mycolic acid (161) (See Fig. 104).
The olefination gave an unusually low yield in this case; this may have been due to the bulky sulfone substituent. The formation of the sulfone-lithium complex may have been hindered sterically; the reason for this is because the α-methyl trans-cyclopropane unit may cause the long chains to fold in a different configuration to that of a cis-cyclopropane containing compound.130, 143-145, 147 As a result, during workup some of the sulfone starting material was recovered and, if the reaction were to be repeated, then addition of a higher equivalence of base would be the most logical course of action.

The synthesis of the protected α-methyl trans-cyclopropane methoxy-mycolic acid (161) was monitored using 1H NMR, 13C NMR, IR, optical rotation and MALDI-MS. The 1H and 13C NMR spectra of (161) were analysed as follows. (See Fig. 105 and Fig. 106).
Fig. 105: 1H NMR data analysis of (161)
The MALDI-MS of (161) also confirmed that the coupling of the two motifs (139) and (140) was successful as the value obtained was 1446.21, which is in agreement with the expected exact mass for (161), (C₉₅H₁₉₀NaO₄Si requires: 1446.43).

The silyl group was removed using hydrofluoric acid in pyridine to give the α-methyl trans-cyclopropane methoxy-mycolic methyl ester (162). Hydrolysis of the methyl ester using lithium hydroxide gave the α-methyl trans-cyclopropane methoxy-mycolic acid, methyl 2-(((1R,2R)-1-hydroxy-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl)hexacosanoate (84) (See Fig. 107).
The 1H NMR, 13C NMR, IR, optical rotation and MALDI-MS were used to confirm the structure of (84). Expansions of the various regions of the 1H NMR spectrum of α-methyl trans-cyclopropane methoxy-mycolic acid (84) are shown in Fig. 108a, 108b, 108c and 108d, with the R group labels corresponding to the bridging carbon chain lengths in each case.

An area of the spectrum which is of particular interest is that between δ 0.50 and δ 0.00, as this is the region of the spectrum which corresponds to the four
protons directly bonded to the trans-cyclopropane ring. The region between δ 0.22-0.09 appears to contain signals for three different hydrogens. This is because H_a and $H_{a'}$ are non-equivalent and each has three couplings, each signal splitting to give a double doublet of doublets (8 lines), which leads to 16 lines. H_b should give a double double double doublet of doublets (32 lines) as it is coupled to five non-equivalent protons; however, due to overlap with the signals for H_a and $H_{a'}$, H_b cannot be resolved fully at δ 0.22-0.18. H_c, represented by the broad multiplet at δ 0.48-0.43, should split to give a doublet double doublet of doublets (16 lines). However, a complex broad multiplet is observed due to the presence of four similar coupling constants leading to overlapping of peaks (See Fig. 108b). H_d and H_e are shown to exhibit doublet of triplets as seen at δ 1.79-1.72 and δ 2.49-2.45, which is consistent with the expected theoretical splitting patterns (See Fig. 108c). H_f and H_g are both shifted downfield, to δ 2.99-2.96 and δ 3.74-3.70, due to their adjacency to the β-hydroxy and methoxy respectively. They both exhibit one hydrogen pentuplets on the spectrum shown below, which is consistent with the expected theoretical splitting pattern (See Fig. 108d).

Fig. 108b: 1H NMR spectrum of (84) δ 1.1 to δ -0.1
Fig. 108c: 1H NMR spectrum of (84) δ 2.7 to δ 1.0

Fig. 108d: 1H NMR spectrum of (84) δ 4.0 to δ 2.6
The 13C NMR spectrum was analysed as follows (See Fig. 109).

![Chemical structure of mycolic acid (85)]

<table>
<thead>
<tr>
<th>C_x</th>
<th>δ</th>
<th>C_x</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>178.7</td>
<td>C_j</td>
<td>32.4</td>
</tr>
<tr>
<td>C_b</td>
<td>85.6</td>
<td>C_k</td>
<td>31.9</td>
</tr>
<tr>
<td>C_c</td>
<td>72.1</td>
<td>C_l</td>
<td>30.5-22.7</td>
</tr>
<tr>
<td>C_d</td>
<td>57.7</td>
<td>C_m</td>
<td>19.7</td>
</tr>
<tr>
<td>C_e</td>
<td>50.6</td>
<td>C_n</td>
<td>18.6</td>
</tr>
<tr>
<td>C_f</td>
<td>38.2</td>
<td>C_o</td>
<td>15.3</td>
</tr>
<tr>
<td>C_g</td>
<td>37.4</td>
<td>C_p</td>
<td>14.9</td>
</tr>
<tr>
<td>C_h</td>
<td>35.6</td>
<td>C_q</td>
<td>14.1</td>
</tr>
<tr>
<td>C_i</td>
<td>35.3</td>
<td>C_r</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Fig. 109: 13C NMR data analysis of mycolic acid (84)

IR analysis of the compound gave the following (See Fig. 110).

<table>
<thead>
<tr>
<th>Stretching</th>
<th>Wave number (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>3520</td>
</tr>
<tr>
<td>C-H</td>
<td>2924</td>
</tr>
<tr>
<td>C-H</td>
<td>2853</td>
</tr>
<tr>
<td>C=O</td>
<td>1735</td>
</tr>
<tr>
<td>O-CH$_3$</td>
<td>1465</td>
</tr>
</tbody>
</table>

Fig. 110: IR analysis of mycolic acid (84)
The MALDI-MS gave an ion at 1318.24 ([M+Na]⁺ for C₈₈H₁₇₄NaO₄ requires: 1318.33). The specific rotation of the compound was found to be [α]²²_D = -0.97 (CHCl₃, 0.468 µmol). This showed that epimerisation of the compound had not occurred as the optical rotation measured for (163) was [α]²³_D = -1.12 (CHCl₃, 0.993 µmol). The molecular rotation of (84) was measured as -12.57, which is compliant with the theoretical value calculated from its intermediate fragments, distal -44.16, proximal +69.30 and branched hydroxy acid -43.14, which give M_D = -18.

2.4 - Synthesis of the protected S-α-methyl trans-alkene keto-mycolic acid (85)

Work previously carried out by G. Koza reported the synthesis of a protected R-α-methyl trans-alkene keto-mycolic acid (163). Therefore it was hypothesized that the preparation of the opposite diastereoisomers, which has the expected natural stereochemistry adjacent to the ketone and the shorter α-alkyl chain of mycolic acids present in M. marinum, would also be successful. Following a similar method to that of Koza, it was possible to prepare the protected S-α-methyl trans-alkene keto-mycolic acid (85) (See Fig. 111).³³

Fig. 111: α-Methyl trans-alkene keto-mycolic acids (163) and (85)

2.4.1 - Retrosynthesis of protected S-α-methyl trans-alkene keto-mycolic acid (85)

Following a similar disconnection route as discussed by G. Koza, the major fragments shown below were derived (See Fig. 112).³³
The \(S,S \) α-methyl tert-butyl dimethyloxy silane fragment (164) can be prepared, following similar methods to those discussed previously, from the secondary alcohol (167) (See Fig. 113).

The branched hydroxy acid (166) can be prepared from \(D \)-mannitol (60) and \(L \)-aspartic (168) acid following the disconnection route discussed by G. Koza (See Fig. 114). 183
Fig. 114: Retrosynthesis of branched hydroxy acid (166)

2.4.2 - Synthesis of the S, S α-methyl tert-butyl dimethyloxy silane sulfone (164)

The S, S α-methyl tert-butyl dimethyloxy silane fragment (164) was prepared from the previously synthesised secondary alcohol, (8S,9S)-9-methyl-1-(tetrahydro-2H-pyran-2-ylxyloxy)heptacosan-8-ol (167). The secondary alcohol was protected with a tert-butyl dimethylsilyl chloride to yield (169), this was then converted into the primary alcohol (170) via a deprotection of the THP group using pyridinium-p-toluene sulfonate. Oxidation of the alcohol with PCC gave the aldehyde, (8S,9S)-8-(tert-butyldimethyloxy)-9-methylheptacosanal (171) (See Fig. 115).
Confirmation of the above structures was done primarily using 1H NMR. Three singlets were observed in the 1H NMR spectrum of (169) at 0.89 (9H), 0.03 (3H) and 0.02 (3H), corresponding to the tert-butyl and two methyls of the protecting group. Removal of the THP group gave rise to a less complicated 1H NMR spectrum for (170), with the absence of signals at δ 4.58, δ 3.90-3.86, δ 3.40, δ 1.86-1.82 and δ 1.75-1.70 being observed. In addition the signal corresponding to the CH$_2$ adjacent to the primary alcohol was shown to have shifted downfield from δ 3.53-3.48 to δ 3.65. Oxidation to the aldehyde (171) was confirmed, the NMR spectrum of this showing a one hydrogen triplet at δ 9.77, corresponding to the aldehyde proton.

In a similar method as discussed before, the aldehyde (171) could be chain extended to give the sulfone (164) with the desired 16 carbon chain (See Fig. 116).
With the S,S α-methyl tert-butylidimethyloxysilyloxy sulfone (164) successfully prepared the previously discussed acetal, it was then possible to prepare methyl 2-((1R,2R,19R)-1-acetoxy-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl) tetracosanoate (166) (See Fig. 117).

The preparation of acetal (166) required two major fragments, the acetal sulfone (173), which could be prepared from D-mannitol (60), and the known branched hydroxy acid (174), obtainable from L-aspartic acid (See Fig. 118).
To obtain the α-methyl acetal (166), D-mannitol (60) was protected using zinc chloride and acetone to give 1,2:5,6-O-isopropylidene-D-mannitol (175). Oxidative cleavage of (175) with sodium m-periodate to yield the glyceraldehyde acetonide (176). Due to the instability of the aldehyde (176) it was treated immediately with methyl diisopropoxyphosphinyl acetate, to give the trans-alkene (61) via a Horner-Wadsworth-Emmons reaction (See Fig. 119).198,199

The oxidative cleavage of the diol (175) is believed to go via the following mechanism (See Fig. 120).
The trans-alkene product (61) from the Horner-Wadsworth-Emmons reaction showed two doublets of doublets in the olefin region of the 1H NMR spectrum. The signal at δ 6.90 showed coupling constants corresponding to the vicinal (J 5.7 Hz) and trans (J 16.1 Hz) coupling, and the signal at δ 6.08 showed allylic (J 1.6 Hz) and trans (J 16.1 Hz) coupling.

A Michael addition was then carried out on the trans-alkene (61), giving the methyl ester, (R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)butyric acid methyl ester (62). This was then reduced with lithium aluminium hydride and the resultant primary alcohol (177) was then oxidised to the corresponding aldehyde, (R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)butanal (178) (See Fig. 121).
1,10-Decanediol (179) was brominated using refluxing hydrobromic acid, to give 10-bromodecan-1-ol (180). Protection of the alcohol (180) was carried out using a tetrahydro-2H-pyran group, to give (181). Iodination of the bromide (181) was then carried out as iodide performs better as a leaving group than bromide (See Fig. 122). The structure of the iodide (182) was confirmed via 13C NMR, with the carbon adjacent to the halide shifting upfield to δ 6.8 upon iodination.

\[
\begin{align*}
\text{HO(CH}_2\text{)}_{10}\text{OH} & \xrightarrow{\text{a)} HBr, (90 \%)} \text{Br(CH}_2\text{)}_{10}\text{OH} & \xrightarrow{\text{b)} \text{2,3-Dihydro} \text{pyran, PPTS, (84 \%)}} & \text{Br(CH}_2\text{)}_{10}\text{OTHP} \\
(179) & & (180) & (181) \\
\text{c)} & & & \text{I(CH}_2\text{)}_{10}\text{OTHP} \\
& & & (182)
\end{align*}
\]

Fig. 122: a) HBr, (90 %); b) 2,3-Dihydro-2H-pyran, PPTS, (84 %); c) NaI, NaHCO$_3$, (89 %)

2-(10-Iododecyloxy)tetrahydro-2H-pyran (182) was coupled to prop-2-yn-1-ol (183) following a modification of the literature method reported by T.H. Vaughn et al., as reported by J.R Al-Dulayymi et al.187,201 The resultant alkyne (184) was then hydrogenated at atmospheric pressure using palladium on charcoal as a catalyst to give (185) (See Fig. 123).

\[
\begin{align*}
\text{HO(CH}_2\text{)}_{10} & \xrightarrow{\text{a)} \text{N}_2\text{O}_3 (1), Li, Fe(NO}_3\text{)}_3, (53 \%)} \text{HOCH}_2\text{-(CH}_2\text{)}_{10}\text{OTHP} \\
(182) & & (183) & (184) \\
\text{b)} & & \text{HO(CH}_2\text{)}_{13}\text{OTHP} \\
& & (185)
\end{align*}
\]

Fig. 123: a) NH$_3$ (l), Li, Fe(NO$_3$)$_3$, (53 %); b) H$_2$, Pd cat., (72 %)
13C NMR spectroscopy was again used to confirm the structure of the alkyne, 13-(tetrahydro-2H-pyran-2-yloxy)tridec-2-yn-1-ol (184) with signals observed in its spectrum corresponding to the quaternary carbons of the triple bond at δ 86.0 and δ 78.5, while upon hydrogenation these signals were no longer observed in the 13C NMR spectrum of (185).

The sulfone, 1-phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylsulfonyl)-1H-tetrazole (188) was obtained using the same procedure as discussed earlier (See page 48) (See Fig. 124).

\[
\begin{align*}
 \text{HO(CH}_2\text{)}_{13}\text{OTHP} & \xrightarrow{\text{a)} \ NBS, PPh}_3, \text{NaHCO}_3, (81 \%) \xrightarrow{\text{b)} \ 1\text{-phenyl-1H-tetrazole-5-thiol, K}_2\text{CO}_3, (61 \%) \xrightarrow{\text{c)} \ \text{ammonium molybdate (VI) tetrahydrate, H}_2\text{O}_2, (71 \%)}
\end{align*}
\]

Fig 124: a) NBS, PPh$_3$, NaHCO$_3$, (81 %); b) 1-phenyl-1H-tetrazole-5-thiol, K$_2$CO$_3$, (61 %); c) ammonium molybdate (VI) tetrahydrate, H$_2$O$_2$, (71 %)

Using the modified Julia-Kocienski olefination, (R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)butanal (178) and 1-phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylsulfonyl)-1H-tetrazole (188) were coupled to give the mixture of alkenes (189) (See Fig. 125).
The alkenes (189) were hydrogenated at atmospheric pressure using a palladium on charcoal catalyst, giving the tetrahydropyranyl ether (190). Deprotection of the tetrahydropyran protecting group was then carried out using pyridinium-p-toluene sulfonate to give the primary alcohol, (R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecan-1-ol (191) (See Fig. 126).
The completion of the hydrogenation and deprotection were confirmed via \(^1\)H NMR spectroscopy, with signals no longer observed in the olefinic region of the \(^1\)H NMR spectrum of (201), and deprotection of the tetrahydropyran group shown by the lack of signals at \(\delta 4.58\), \(\delta 4.00\) and \(\delta 3.60\) in the spectrum for (202).

The sulfone, 5-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecyl sulfonyl)-1-phenyl-1H-tetrazole (205) was obtained using the same procedure as discussed earlier, via intermediates (192) and (193) (See page 48) (See Fig. 127).

Fig. 127: a) NBS, PPh\(_3\), NaHCO\(_3\), (93 %); b) 1-phenyl-1H-tetrazole-5-thiol, K\(_2\)CO\(_3\), (92 %); c) ammonium molybdate (VI) tetrahydrate, H\(_2\)O\(_2\), (73 %)

To obtain the required aldehyde to complete the branched hydroxy acid, the disconnection route discussed earlier (See page 104), starting from methyl 2-((R)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy) propyl)pent-4-enoate (195) was used as in the scheme overleaf (See Fig. 128).

Following the procedure as discussed by W. Yu et al., an improved oxidative cleavage of the olefin (195) was carried out to give the aldehyde (196). A modified Julia-Kocienski olefination of the resultant aldehyde (196) and 20 carbon sulfone (197) resulted in the alkenes (198) (See Fig. 128).
The mechanism of the oxidative cleavage is similar to the oxidative cleavage of 1,2:5,6-O-isopropylidene-D-mannitol (175); however in this case osmium tetroxide is used to convert the double bond into a diol (See Fig. 129). Once the diol has been generated it is cleaved using sodium m-periodate to give the aldehyde.

Hydrogenation and debenzylation of the unsaturated compound (198) was carried out at atmospheric pressure using a palladium on charcoal catalyst to give the primary alcohol (199), which was then oxidised to give the required aldehyde, (200) (See Fig. 130).
Methyl 2-(((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-oxopropyl)tetracosanoate (200) and 5-((R)-16-(((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecylsulfonyl)-1-phenyl-1H-tetrazole (194) were coupled using a modified Julia-Kocienski olefination, followed by a hydrogenation gave the intermediate branched hydroxy acid, methyl 2-(((1R,2R,19R)-1-(tert-butyldimethylsilyloxy)-19-(((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (201) (See Fig. 131). 1H NMR data analysis of (201) can be seen overleaf (See Fig. 132).
To avoid the occurrence of two identical protecting groups after coupling the silyl ether was deprotected and replaced with an acetate group. This was done because if identical protecting groups were present then it would not be possible to selectively deprotect one and not the other. (See Fig. 133).
Therefore the silyl ether was removed from (201) using hydrofluoric acid/pyridine complex, to give the secondary alcohol (203), which was then re-protected using acetic anhydride to give the corresponding acetate, methyl 2-((1R,2R,19R)-1-acetoxy-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (166) (See Fig. 134).

Fig 134: a) HF.Pyr, pyridine, (71 %); b) Ac₂O, dry toluene, (89 %)
2.4.4 - Coupling the meromycolate moiety and branched hydroxy acid

Oxidation of the branched hydroxy acid acetal (166) with periodic acid gave methyl 2-((1R,19R)-1-acetoxy-19-methyl-20-oxoicosyl)tetracosanoate (165) (See Fig. 135).

![Chemical structure](image)

Fig. 135: a) HIO₄ (60 %)

A typical modified Julia-Kocienski olefination using lithium bis(trimethylsilyl) amide would give the olefin product as a mixture of cis- and trans- stereoisomers (See Fig. 136).

![Chemical structure](image)

Fig. 136: Undesired alkene mycolic acids, mixture of cis and trans isomers
Therefore, as isolation of the \textit{trans}-olefin would be inconvenient, lithium \textit{bis}(trimethylsilyl) amide was not used as the base. Kocienski \textit{et al.} and Pospíšil \textit{et al.} both discussed the use of different bases, most significantly potassium \textit{bis}(trimethylsilyl)amide, to increase stereoselectivity in favour of the \textit{trans}-isomer.203,204 Kocénski \textit{et al.} discovered that changing the base used increases stereoselectivity in the order Li<Na<K, and Pospíšil \textit{et al.} give evidence that increases in the size of the alkyl chain of the aldehyde lead to higher stereoselectivity. The mechanism of the olefination is the same as previously discussed in section 2.2.2, but leading to the \textit{trans}-product.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{a) KHMDS, DME, (34 \%)}
\end{figure}

The stereoselective formation of the \textit{trans}-isomer was confirmed with NMR spectroscopy, the spectrum showing two olefinic protons at δ 5.34 and δ 5.23 both with a coupling constant of 15 Hz corresponding to the two \textit{trans}-protons of the double bond. The 13C NMR spectrum of (204) showed signals at δ 136.5 and δ 128.4, corresponding to just two olefinic carbons. The molecular rotation of (204) was calculated, $\text{MD} = +43.96$.

The silyl ether was removed using hydrofluoric acid/pyridine complex to give the protected \textit{S,S} \textit{trans}-alkene hydroxy-mycolic acid (205). Oxidation with PCC followed giving the target molecule, methyl (2\textit{R},3\textit{R},21\textit{R},40\textit{S},\textit{E})-3-acetoxy-2-docosyl-21,40-dimethyl-39-oxooctapentadec-22-enoate (85) (See Fig. 138).
Full ^1H NMR expansions of S-α-methyl trans-alkene keto-mycolic acid (85) can be seen as follows (See Fig. 139a, 139b, 139c, 139d and 139e). H_a and H_a' are shown to give a doublet of triplets splitting pattern in the ^1H NMR spectrum of (86). This shows that H_a and H_a' are not magnetically equivalent, due to the effect of the chiral centre on the opposite side of the ketone. Proton H_b shows a sextet, and H_c a doublet of triplets, consistent with the theoretical expectation (See Fig. 139b). Signals for H_e and H_f are observed in the olefinic region, H_e giving a doublet of doublets and H_f a doublet of triplets. The configuration of the double bond was confirmed to be trans as the signals observed at δ 5.33 and δ 5.24, corresponding to the olefinic protons H_f and H_e, both exhibiting a coupling constant of 15.1 Hz. This is again consistent with the theoretical splitting pattern for these protons (See Fig. 139e).
Fig. 139b: 1H NMR spectrum of (85) δ 1.7 to δ 0.8

Fig. 139c: 1H NMR spectrum of (85) δ 4.0 to δ 1.8
Fig. 139d: 1H NMR spectrum of (85) δ 2.70 to δ 2.34

Fig. 139e: 1H NMR spectrum of (85) δ 5.55 to δ 4.95
The MALDI-MS of the protected keto-mycolic acid (86) gave an ion at M+Na+: 1288.22 [C₈₅H₁₆₄NaO₅ requires: 1288.25]. The specific rotation of the compound was found to be [α]²²_D = +3.52 (CHCl₃, 1.094 µmol), the molecular rotation of (86) was calculated, M_D = +44.57, which confirmed that (86) had not epimerised as (215) gave an M_D = +43.96. The ¹³C NMR data and IR analysis was as follows (See Fig. 140 and Fig. 141).

![Diagram of molecule 85]

<table>
<thead>
<tr>
<th>Cₓ</th>
<th>δ</th>
<th>Cₓ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>215.2</td>
<td>l</td>
<td>36.7</td>
</tr>
<tr>
<td>b</td>
<td>173.7</td>
<td>m</td>
<td>35.6</td>
</tr>
<tr>
<td>c</td>
<td>170.3</td>
<td>n</td>
<td>33.1</td>
</tr>
<tr>
<td>d</td>
<td>136.5</td>
<td>o</td>
<td>32.6</td>
</tr>
<tr>
<td>e</td>
<td>128.4</td>
<td>p</td>
<td>31.9</td>
</tr>
<tr>
<td>f</td>
<td>74.1</td>
<td>q</td>
<td>29.8-23.7</td>
</tr>
<tr>
<td>g</td>
<td>51.5</td>
<td>r</td>
<td>22.7</td>
</tr>
<tr>
<td>h</td>
<td>49.6</td>
<td>s</td>
<td>21</td>
</tr>
<tr>
<td>i</td>
<td>46.3</td>
<td>t</td>
<td>19.5</td>
</tr>
<tr>
<td>j</td>
<td>41.2</td>
<td>u</td>
<td>16.4</td>
</tr>
<tr>
<td>k</td>
<td>37.3</td>
<td>v</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Fig. 140: ¹³C NMR data analysis of (2R,3R,21R,40S,E) methyl 3-acetoxy-2-docosyl-21,40-dimethyl-39-oxooctapentacont-22-enoate (85)
Table 1: IR data analysis of methyl (2R,3R,21R,40S,E)-3-acetoxy-2-docosyl-21,40-dimethyl-39-oxooctapentacont-22-enoate (86)

<table>
<thead>
<tr>
<th>Stretching</th>
<th>Wave number (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>3420</td>
</tr>
<tr>
<td>C=C-H</td>
<td>3019</td>
</tr>
<tr>
<td>COOH</td>
<td>2926</td>
</tr>
<tr>
<td>COOH</td>
<td>2855</td>
</tr>
<tr>
<td>C=C</td>
<td>1521</td>
</tr>
<tr>
<td>CH(_2)C=O</td>
<td>1420</td>
</tr>
<tr>
<td>C-H</td>
<td>1215</td>
</tr>
</tbody>
</table>

Fig. 141: IR data analysis of methyl (2R,3R,21R,40S,E)-3-acetoxy-2-docosyl-21,40-dimethyl-39-oxooctapentacont-22-enoate (86)

2.5 – Synthesis of \(R\)-\(\alpha\)-methyl \(trans\)-alkene keto-mycolic acid (86) and of \(R,R\) and \(S,S\) \(\alpha\)-methyl \(trans\)-alkene hydroxy-mycolic acid (87) and (88)

2.5.1 – Synthesis of \(R\)-\(\alpha\)-methyl \(trans\)-alkene keto-mycolic acid (86)

Work previously by G. Koza synthesised a protected \(\alpha\)-methyl \(trans\)-alkene keto-mycolic acid (163).\(^{183}\) However hydrolysis of this compound was not successfully carried out as epimerisation of the methyl group adjacent to the keto group occurred (See Fig. 142).

![Fig. 142: Racemisation of \(\alpha\)-methyl \(trans\)-alkene keto-mycolic acid](image-url)
It is necessary to have single enantiomers of mycolic acids for biological activity testing in order to determine whether or not the stereochemistry adjacent to the ketone is important. Therefore successfully synthesising the unprotected R-α-methyl trans-alkene keto-mycolic acid (86) was a significant goal of this project. The successful synthesis of the R-α-methyl trans-alkene keto-mycolic acid (86) was completed following the scheme below (See Fig. 143). The protected R,R α-methyl trans-alkene hydroxy-mycolic acid (206) was previously synthesised by G. Koza during his preparation of the protected keto-mycolic acid (163).

![Diagram of deprotection scheme for R-α-methyl trans-alkene keto-mycolic acid (86)](image)

Fig. 143: Deprotection scheme for R-α-methyl trans-alkene keto-mycolic acid (86)

The secondary alcohol of the protected α-methyl trans-alkene hydroxy-mycolic acid (206) was protected with a tetrahydropyran group so that hydrolysis of
the methyl ester and acetate could be then carried out without racemisation. This was done by first reacting with 2,3-dihydropyran and pyridinium-p-toluene sulfonate to yield (207). Hydrolysis was then carried out using lithium hydroxide with THF, methanol and water as solvents to give (208) (See Fig. 144).

![Chemical structures](image)

Fig. 144: a) 2,3-Dihydropyran, PPTS, (84 %); b) LiOH, THF/MeOH/H2O, (72 %)

The above compounds were characterised using NMR, signals corresponding to the tetrahydropyran group being observed at δ 4.68-4.61 and δ 3.96-3.89 in the 1H NMR spectrum of (207). Hydrolysis of the esters was confirmed by the loss of both three hydrogen singlets at δ 3.68 and δ 2.03 in the spectrum of (208). The molecular rotations of (207) and (208) confirmed that the methyl group in the distal position had not epimerised, as (207) $\Delta D = +26.91$ and (208) $\Delta D = +22.68$.

The β-hydroxy group was then silylated, so that the tetrahydropyran group could be removed and the resultant secondary alcohol oxidised, to give the silylated keto-mycolic acid (209). The THP group was removed using pyridinium-p-toluene sulfonate, using THF, methanol and water as a solvent mixture, giving (210). Oxidation was carried out using PCC to give the silylated keto-mycolic acid,
The introduction of the silyl ester protecting group was observed in the 1H NMR spectrum of (209) as two three hydrogen singlets at δ 0.15 and δ 0.14 corresponding to the two methyl groups, and the nine hydrogen singlet at δ 0.93 corresponding to the tert-butyl group. Deprotection of the tetrahydropyran group caused loss of multiplets at δ 4.67-4.62 and δ 3.93-3.89. Oxidation of the primary alcohol (210) was observed via 13C NMR, with a signal corresponding to the quaternary carbon of the keto group at δ 215.3 in the spectrum of (211).
The deprotection of the silyl group was then carried out using hydrofluoric acid in pyridine to yield the R-α-methyl trans-alkene keto-mycolic acid (86) (See Fig. 146).

Full 1H NMR expansions of R-α-methyl trans-alkene keto-mycolic acid (86) can be seen as follows (See Fig. 147a, 147b, 147c, 147d and 147e). H_a and H_a' is observed to give a broad quartet in the 1H NMR spectrum; theoretically a doublet of triplets would be expected, however the broad quartet observed is possibly due to the three protons adjacent having similar coupling constants. The broadness of this signal is caused due to the fact that H_a and H_a' are not magnetically equivalent. The signal corresponding to H_b is a sextet, agreeing with the expected theoretical splitting. H_c and H_c' are observed to give two triplets, because the two are non-magnetically equivalent. In theory H_d should show a double doublet of quartets splitting pattern (16 lines), but a broad signal is observed due to similar coupling constants with neighbouring protons (See Fig. 147c). H_e and H_f are observed as protons in the olefinic region, with H_e splitting to give a doublet of doublets and H_f a doublet of triplets. This is consistent with the theoretical splitting pattern for these protons (See Fig. 147e).
Fig. 147a: R-α-methyl trans-alkene keto-mycolic acid (86)

Fig. 147b: 1H NMR spectrum of (86) δ 1.1 to δ 0.8
Fig. 147c: 1H NMR spectrum of (86) δ 1.9 to δ 1.1

Fig. 147d: 1H NMR spectrum of (86) δ 2.8 to δ 1.8
The MALDI-MS of the acid (86) gave an ion for M+Na⁺ at 1232.36 [C₈₂H₁₆₀NaO₄ requires: 1232.22]. The optical rotation of the compound was found to be [α]⁺°⁻¹ = +2.90 (CHCl₃, 0.471 μmol). The molecular rotation of (86) was calculated, M_D = +35.09, confirming that the compound had not epimerised, as the molecular rotation of (211) was earlier calculated to be +22.68. The ¹³C NMR data was analysed as follows (See Fig. 148). IR analysis gave the following (See Fig. 149).
Fig. 148: 13C NMR data analysis of (2R,3R,19R,38R,E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-oxohexapentacont-20-enoic acid (86)

<table>
<thead>
<tr>
<th>C_x</th>
<th>δ</th>
<th>C_x</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>215.5</td>
<td>C_k</td>
<td>35.6</td>
</tr>
<tr>
<td>C_b</td>
<td>177.9</td>
<td>C_l</td>
<td>33.1</td>
</tr>
<tr>
<td>C_c</td>
<td>136.5</td>
<td>C_m</td>
<td>31.9</td>
</tr>
<tr>
<td>C_d</td>
<td>128.4</td>
<td>C_n</td>
<td>29.8-22.7</td>
</tr>
<tr>
<td>C_e</td>
<td>72.2</td>
<td>C_o</td>
<td>22.6</td>
</tr>
<tr>
<td>C_f</td>
<td>50.6</td>
<td>C_p</td>
<td>21</td>
</tr>
<tr>
<td>C_g</td>
<td>46.4</td>
<td>C_q</td>
<td>19.4</td>
</tr>
<tr>
<td>C_h</td>
<td>41.2</td>
<td>C_r</td>
<td>16.4</td>
</tr>
<tr>
<td>C_i</td>
<td>37.3</td>
<td>C_s</td>
<td>14.1</td>
</tr>
<tr>
<td>C_j</td>
<td>36.7</td>
<td>C_t</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 149: IR data analysis of (2R,3R,19R,38R,E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-oxohexapentacont-20-enoic acid (86)

<table>
<thead>
<tr>
<th>Stretching</th>
<th>Wave number (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>3420</td>
</tr>
<tr>
<td>C=C-H</td>
<td>3019</td>
</tr>
<tr>
<td>COOH</td>
<td>2926</td>
</tr>
<tr>
<td>COOH</td>
<td>2855</td>
</tr>
<tr>
<td>C=C</td>
<td>1521</td>
</tr>
<tr>
<td>CH2C=O</td>
<td>1420</td>
</tr>
<tr>
<td>C-H</td>
<td>1215</td>
</tr>
</tbody>
</table>
2.5.2 – Synthesis of \(R,R \) and \(S,S \) \(\alpha \)-methyl trans-alkene hydroxy-mycolic acid (87) and (89)

From the Koza protected \(R,R \) \(\alpha \)-methyl trans-alkene hydroxy-mycolic acid (163) it was possible to prepare the corresponding free hydroxy acid (87) via hydrolysis. This was carried out using lithium hydroxide with THF, methanol and water as a solvent mixture to give the \(R,R \) \(\alpha \)-methyl trans-alkene hydroxy-mycolic acid (87) (See Fig. 150). The diastereomer (88) was prepared using the protected \(S,S \) \(\alpha \)-methyl trans-alkene hydroxy-mycolic acid intermediate (205) as previously discussed in section 2.4.4. Again hydrolysis with lithium hydroxide with THF, methanol and water as a solvent mixture gave the free hydroxy acid (88) (See Fig. 151).

\[
\begin{align*}
\text{Fig. 150: a) LiOH, THF/MeOH/H}_2\text{O, (59 \%)}
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 151: a) LiOH, THF/MeOH/H}_2\text{O, (65 \%)}
\end{align*}
\]
Full 1H NMR expansions of R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (87) and (88) can be seen as follows (See Fig. 152a, 152b, 152c, 152d and 152e).

The splitting patterns observed for the oxygenated regions, H_a, H_b, H_c and H_d, for the R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (88) and (89) are the same as that for the cis-cyclopropane methoxy-mycolic acid (84). They only differ in chemical shift because of the hydroxyl group at the C$_{39}$ position (See Fig. 152b, 152c and 152d). H_c and H_f are observed as protons in the olefinic region, with H_c splitting to give a doublet of doublets and H_f a doublet of triplets. This is consistent with the theoretical splitting pattern for these protons (See Fig. 152e).
Fig. 152c: 1H NMR spectrum of (87) and (88) δ 2.6 to δ 1.9

Fig. 152d: 1H NMR spectrum of (87) and (88) δ 3.9 to δ 3.4
Fig. 152e: 1H NMR spectrum of (87) and (88) δ 5.5 to δ 5.1

The MALDI-MS measured for (87) was $\text{M}+\text{Na}^+$ 1232.47 [C$_{82}$H$_{160}$NaO$_4$ requires: 1232.22] and that for (88) was 1232.36. The 1H NMR, 13C NMR and IR spectra of the R,R (87) and S,S (88) free hydroxy acids were essentially identical. Their optical rotations were recorded as $[\alpha]_{D}^{20} = +1.67$ (CHCl$_3$, 1.287 µmol) for the R,R hydroxy acid (87) and $[\alpha]_{D}^{21} = -2.07$ (CHCl$_3$, 0.743 µmol) for the S,S (88), which is as expected. The molecular rotation for (88) was calculated giving $\text{M}_{D} = -25.09$, this was accepted as correct as Quémard et al. predicted that the S,S-hydroxy trans-alkene mycolate from M. smegmatis MJ95 would possess $\text{M}_{D} = -16$. However no data regarding the R,R-hydroxy trans-alkene mycolate was provided, molecular rotation of (87) was calculated, $\text{M}_{D} = +20.24$. The 13C NMR and IR data was analysed as follows (See Fig. 153 and 154).

The data obtained for R-α-methyl trans-alkene keto-mycolic acid (87) and of R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (88) and (89) confirms the total syntheses of three of the major trans-alkene mycolates reported in M. marinum. Naturally occurring trans-alkene mycolates from M. aurum were characterised by M-A. Lanéelle et al. where they recorded signals in the 1H NMR which are consistent with the author’s results, where signals were recorded at δ 5.34 and δ 0.94, corresponding to the double bond and the adjacent methyl group.
Fig. 153: 13C NMR data analysis of R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (87) and (88)

<table>
<thead>
<tr>
<th>C_x</th>
<th>δ</th>
<th>C_x</th>
<th>δ</th>
<th>C_x</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a</td>
<td>177.3</td>
<td>C_b</td>
<td>136.5</td>
<td>C_c</td>
<td>128.5</td>
</tr>
<tr>
<td>C_d</td>
<td>75.4</td>
<td>C_e</td>
<td>72.2</td>
<td>C_f</td>
<td>50.5</td>
</tr>
<tr>
<td>C_g</td>
<td>41.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_m</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{n}</td>
<td>30.0-27.4</td>
<td>C_o</td>
<td>22.7</td>
<td>C_p</td>
<td>21</td>
</tr>
<tr>
<td>C_q</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_r</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 154: IR data analysis of both R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (87) and (88)

<table>
<thead>
<tr>
<th>Stretching</th>
<th>Wave number (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>3534</td>
</tr>
<tr>
<td>COOH</td>
<td>2922</td>
</tr>
<tr>
<td>COOH</td>
<td>2854</td>
</tr>
<tr>
<td>C=O</td>
<td>1751</td>
</tr>
<tr>
<td>C-C</td>
<td>1466</td>
</tr>
</tbody>
</table>

Fig. 154: IR data analysis of both R,R and S,S α-methyl trans-alkene hydroxy-mycolic acid (87) and (88)
2.6 – Biological activity

All six compounds prepared during this study were sent to the Professor Jan Verschoor research group of the University of Pretoria, South Africa and the Professor Johan Grooten research group of Ghent University, Belgium for testing of their biological activity.

Thus far data on the biological activities has been generated for two of the six compounds prepared during this study.

2.6.1 – Tuberculosis antibody activity

The tests carried out in South Africa studied the recognition of the mycolic acids by lipid antibodies present in the serum of patients known to be infected with TB, where the response is measured using enzyme-linked immunosorbent assay (ELISA). In ELISA, an antigen impregnated surface is washed with a specific antibody which is linked to an enzyme. The final stage of the preparation process is the addition of a substrate which then gives a detectable signal, e.g. fluorescence. Hence the number of antigen-antibody interactions can be measured and as a result the efficiency of an immunological agent. The test is carried out on both TB positive and TB negative sera so that the response measured is not masked by the presence of *M.Tb*.

The two compounds tested at the time of going to print were cis-cyclopropane methoxy-mycolic acid (83) and α-methyl trans-cyclopropane methoxy-mycolic acid (84).

With respect to the cis-cyclopropane methoxy-mycolic acid (83), the results indicate that the recognition of this sample by TB anti-bodies is relatively low. However, as previously discussed, Al-Dulayymi et al. successfully prepared three other cis-cyclopropane methoxy-mycolic acids, (212) – (214) with the alternative stereochemistries in the mero-chain. It is interesting that there are definite differences in activity shown with the four synthetic methoxy-mycolic acid variants tested, i.e. stereochemistry does affect recognition.

The data provided by the Verschoor group showed the following activity, where ‘ma mix’ is the total mycobacterial mycolic acid extract for comparison (See Fig. 155).
The activities of the four compounds, shown in Fig. 156 fall into the following trend (214) > (213) > (212) ≈ (8). What is of particular interest is the distinct difference between compounds (214) and (83), where the only structural variance is in the distal position. These preliminary results indicate that the presence of a methoxy-mycolate in the R,R configuration yields improved recognition by TB anti-bodies. Another interesting point is the relationship activity between compounds (213) and (214), where the only structural variance is in the proximal cis-cyclopropane ring. The results show that there is a distinct increase in recognition when the cis-cyclopropane ring is found in the R,S-configuration.
The results indicated that the α-methyl trans-cyclopropane methoxy-mycolic acid (84) (See Fig. 157) showed excellent activity when compared to other mycolates tested. However as (84) was the first enantiomerically pure α-methyl trans-cyclopropane methoxy-mycolic acid prepared it is difficult to draw comparisons, as there are presently no diastereoisomers to directly compare to. However, two other related samples were prepared and tested, a α-methyl trans-cyclopropane hydroxy-mycolic acid (215), in the same configuration as (84), and a racemic mixture of α-methyl trans-cyclopropane keto-mycolic acid (216) (See Fig. 157). Although the chain lengths of the samples tested are not identical an interesting trend occurred in the results where recognition by TB antibodies was in the order methoxy $>$ hydroxy \approx keto.
Also another interesting point is that when comparing cis- and trans-isomers there is a distinct difference. The *trans*-isomer (84) shows a five-fold increase in recognition in comparison to its *cis*-counterpart (212). However, this comparison cannot be regarded as being direct, as the *trans*-isomer (84) has a methyl group adjacent to cyclopropane ring and the *cis*-isomer (212) does not possess a methyl group in this position. This information is important as it provides evidence that the stereochemistry of the cyclopropane rings of a mycolic acid play an important role in the recognition of MA by *M.Tb* antibodies. It is believed that the methyl branch adjacent to the *trans*-cyclopropane ring leads to a different packing of mycolic acids, in comparison to *cis*-isomers. The increase in activity shown by the *trans*-isomer may be due to the conformation of the compound caused by the methyl group adjacent to the cyclopropane, as the packing of the mycolic acid may be more preferential. This may provide the key to increasing the sensitivity and selectivity of sensors to detect the disease in the presence of HIV/AIDS.
2.6.2—Asthma related immunological activity

Work carried out by the Prof. Johan Grooten research group has yielded additional interesting results.207,208 The data provided to the author shows results for compound (84) compared to a range of different synthetic mycolic acids; only selected data are reported below. The data confirms that the stereochemistry of the proximal position does have a significant effect in a series of bioassays. The compounds chosen from this set of results to illustrate this hypothesis are shown in Fig. 158.

Fig. 158: Mycolic acid samples

Firstly, the broncho-alveolar inflammatory cell infiltrate was measured. The results show that mycolic acids from \textit{M.Tb} elicit an innate immune airway response,
where the number of neutrophils, white blood cells, represented the majority and were significantly increased by the process. The numbers were recorded using a broncho-alveolar lavage (BAL) to recover cells from the airway. Fig. 159 shows the total number of cells collected as a result of the response, where the broken line indicates the mean number of cells per ml in the BAL-fluid.

![Fig. 159: Broncho-alveolar inflammatory cell count](image)

The results indicated that the α-methyl trans-cyclopropane methoxy mycolic acid (84) prepared by the author showed lower activity in comparison to the natural mycolic acid mixture, and significantly lower than the cis-cyclopropane methoxy-mycolic acid (212). This provides important information into the activity of different subclasses of mycolic acids. It is clear to see that there is a definite difference between the methoxy and keto variations of the α-methyl trans-cyclopropane containing mycolic acids, with the methoxy performing better than the keto, also both methoxy mycolates tested, (84) and (212), show differing results. This is interesting as it is now apparent from this data that the cis-cyclopropane containing compound (212) is more active that the α-methyl trans-cyclopropane containing compound (84). The data collected shows two definite trends in reduction of inflammation brought on by mycolic acids, where trans-cyclopropane containing mycolic acids elicit more of a reduction that cis-cyclopropanes. Also alpha-mycolates show the best response, followed by keto and then methoxy, alpha > keto
methoxy. As alpha show the best response with regard to neutrophillic inflammation, therefore it would be sensible to investigate other configurations of alpha-mycolic acids.

During this study the α-methyl trans-cyclopropane methoxy mycolic acid (84) was also tested for its immunological response, particularly alveolar macrophage transcription activity. These tests were carried out using liposome carriers to transmit the mycolic acid isomers to their target, alveolar macrophages. Data from compounds (212), (216), (217) and the natural mycolic acid mixture is also shown for comparison in Fig. 160, where the dotted line shows an empty liposome treatment, which was used as a control.

The data indicates different stages in the immune response, with Nos2 and Arg1 representing the classical and alternative macrophage activation markers. Il6, Il12b, Cxcl10, Ccl2 and Cxcl1 represent pro-inflammatory mRNA genes and Il10 for anti-inflammatory cytokine encoding. Therefore in the case of treating asthma with mycolic acids, a low pro-inflammatory effect and high anti-inflammatory effect is desired. From the data provided it shows that the two methoxy-mycolates, (84) and (212), elicit an increase in both pro-inflammatory and anti-inflammatory effects, whereas alpha-mycolates show little or no response, and keto-mycolates showed a slight response. Therefore the conclusion can be drawn that mycolic acids containing an oxygenated functionality in the distal position elicit inflammatory responses.

What is also interesting about these results is that the two methoxy mycolates, (84) and (212), only significantly differed in activity in the case of Cxcl1 expression; Cxcl1 translates to the most important neutrophil chemoattracting and activating chemokine CXCL1.
Fig. 160: Alveolar macrophage inflammatory gene transcription
Chapter 3 - Conclusions

The goals of this project were to synthesise a range of oxygenated mycolic acids that are components of pathogenic mycobacteria; the mycolic acids prepared were then to be tested for their biological activity toward TB and asthma.

Six naturally occurring mycolic acids were successfully synthesised, for the first time, along with several key intermediates, which will provide building blocks for future work. The six mycolic acids synthesised were:

1. *cis*-Cyclopropane methoxy-mycolic acid (83)
2. *α*-Methyl *trans*-cyclopropane methoxy-mycolic acid (84)
3. Protected *S* α-methyl *trans*-alkene keto-mycolic acid (85)
4. *R*-α-Methyl *trans*-alkene keto-mycolic acid (86)
5. *R,R α*-Methyl *trans*-alkene hydroxy-mycolic acid (87)
6. *S,S α*-Methyl *trans*-alkene hydroxy-mycolic acid (88)
The cis-cyclopropane methoxy-mycolic acid (83) was selected as a target molecule for this project as J. R. Al-Dulayymi et al. had completed the synthesis of three cis-cyclopropane methoxy-mycolic acids with differing configurations. Therefore the preparation of (83) was carried out to complete the set of major isomer variants from M.Tb, enabling exploration of the effects of differing chiral centres on biological activity.

The synthesis of \(\alpha \)-methyl trans-cyclopropane methoxy-mycolic acid (84) was completed, this being the first of its sub-class, present in M.Tb, to be prepared. Biological data collected for the \(\alpha \)-methyl trans-cyclopropane methoxy-mycolic acid (84) and the four cis-cyclopropane methoxy mycolic acids prepared by the author and J.R. Al Dulayymi et al.182,183 showed that the configuration of the cyclopropane ring in the proximal position has an effect upon the performance of the compound on a biological level.

The four trans-alkene mycolic acids (85-88) were prepared during the course of this work. Preparation of the \(S \) configuration of \(\alpha \)-methyl trans-alkene keto-mycolic acid ester (85) and the \(S,S \) \(\alpha \)-methyl trans-alkene hydroxy-mycolic acid (88) was completed without epimerisation of the chiral centres. G. Koza discussed the synthesis of the \(R \) configuration, however he was unable to hydrolyse the acetate and
methyl ester groups. The hydrolysis of the protected precurser described by G. Koza, was completed to produce \(R\alpha \)-methyl trans-alkene keto-mycolic acid (87), and the corresponding hydroxy-mycolic acid, \(R,R \alpha \)-methyl trans-alkene hydroxy-mycolic acid (87) was also prepared to complete the synthesis of all four trans-alkene mycolic acids. In this report the author discusses the preparation of the first \(\alpha \)-methyl trans-alkene hydroxy-mycolic acids and also the first deprotected \(\alpha \)-methyl trans-alkene keto-mycolic acid, which are naturally occurring in \textit{M. marinum}.

The work carried out provides a synthetic route for the preparation of \(\alpha \)-methyl trans-alkene mycolic acids, without epimerisation of any chiral centres. This was important as methods previously discussed by G. Koza183 gave incomplete synthesis of \(\alpha \)-methyl trans-alkene mycolic acids. The author's work now confirms that the procedure developed by G. Koza \textit{et al.} can be used to synthesize \(\alpha \)-methyl trans-alkene keto and hydroxy mycolic acids, without epimerisation of any chiral centres.188 Should the immunological reports on these compounds be positive, this would provide further validity to continue work in the preparation of other \(\alpha \)-methyl trans-alkene mycolic acids. Another area of future work could be in the preparation of the S-\(\alpha \)-methyl trans-alkene keto-mycolic acid; an attempt was made to prepare this compound, however due to time restraints and the small quantity of intermediates, this was not completed.

The current synthetic strategy for mycolic acids is very reliable and flexible; in particular the use of the modified Julia-Kocienski olefination, followed by a hydrogenation is an excellent method for chain extension. Any stereochemistry present, in either aldehyde or sulfone used, is retained and a simple hydrogenation at atmospheric pressure and room temperature, or use of a di-imide completes the synthesis. The modified Julia-Kocienski olefination was also used in the preparation of trans-alkene mycolic acids, again with retention of stereochemistry in the adjacent methyl group. With optimisation of the \textit{trans}-alkene olefination, this reaction would prove to be highly practical.

\textit{L}-Ascorbic acid (52) and \textit{D}-mannitol (60) were used as starting materials in the preparation of mycolic acids as they are low in cost and readily available. One issue when using \textit{L}-ascorbic acid (52) is that hydrogenation at high pressure is required to obtain the corresponding lactone required; some problems were presented in obtaining the use of an adequate reactor. However there may be a possible method which could be exploited that would provide an alternative route, \textit{D}-mannitol (60)
would be used as a starting material in the preparation of such intermediates, where an (61) can be obtained from methods discussed in this thesis, reduction of the methyl ester using lithium aluminium hydride to give the hydroxide (218). Epoxidation of the olefin (218) and subsequent ring opening of (219) yields the diol (220). From this the intermediate (221) can be obtained as an alternative to the current methods being used.\(^9\)

![Chemical structures](image)

Fig. 161: Alternative preparation of distal function in oxygenated mycolic acids

This alternative method would increase the number of stages required to reach the target molecule; for this reason this method might not prove viable as an alternative in an industrial setting. However, for the purposes of chemical research the author believes that, at the research stage, the use of this alternative method would prove to be more cost-effective. Currently the methods being used in the M.
S. Baird research group would not be too convenient as they rely heavily upon column chromatography as a purification method. Therefore, in addition to reducing the length of the scheme, alternative purification methods, such as recrystallisation or the development of automated chromatography methods, would make mycolic acid synthesis more commercially viable.

The results of biochemical assays, which have been received, are interesting as it was previously believed that the stereochemistry of the cyclopropane ring had little effect on the virulence of the mycobacteria. However, although the ELISA results are preliminary, they indicate that the stereochemistry of the both proximal and distal functionalities have a significant influence on the detection of the mycobacteria, as they show a differential antibody recognition in an ELISA assay. Following the results of the biological activity testing another viable area of future study is in the preparation of the remaining α-methyl trans-cyclopropane methoxy-mycolic acids. The data for the cis-cyclopropane methoxy-mycolic acids has shown that the configuration of the cyclopropane ring, the presence of a methyl branch adjacent to the cyclopropane ring and the configuration of the distal α-methyl methoxy functionalities both affect antibody production. Therefore with the promising data received for α-methyl trans-cyclopropane methoxy-mycolic acid (84), exploring the activity of the other configurations may provide some interesting results.

With regard to the studies carried out by the Johan Grooten research group, they provided results which show that mycolic acids containing an oxygenated distal position elicit a higher inflammatory response. The results also indicate that this response can be both pro-inflammatory and anti-inflammatory; hence a viable area of future study could be to explore these results further and to prepare relevant compounds which could help give a higher anti-inflammatory response.
Chapter 4 - Experimental

Chemicals used were obtained from commercial suppliers or prepared from them by the methods described. Diethyl ether and tetrahydrofuran were dried over sodium wire using benzophenone as an indicator; dichloromethane was dried over calcium hydride powder. Petrol used was of boiling point 40-60°C. Reactions carried out under inert conditions were under a slow stream of nitrogen. Those carried out at low temperatures were cooled using a bath of methylated spirits and liquid nitrogen. All reagents and solvents used were of reagent grade unless otherwise stated. Anhydrous magnesium sulfate was used as a drying agent. Aldrich provided silica gel and silica gel plates used for column chromatography and thin layer chromatography respectively. Anhydrous magnesium sulfate was used to dry organic solutions. IR spectra were carried out on a Perkin-Elmer 1600 F.T.I.R. spectrometer as liquid films. NMR spectra were carried out on a Bruker AC250 or Advance 500 spectrometer; for 1H spectra the machine was ran at 500MHz, for 13C spectra the machine was ran at 125MHz, (+ = CH2, - = CH, CH3). [α]D values were recorded in CHCl3 on a POLAAR 2001 Optical Activity polarimeter. Mass spectra were recorded on a Bruker Microtof. Matrix-assisted laser desorption/ionization mass spectrometer values are given plus sodium to an accuracy of 2 d.p..

The preparation of known intermediates used in this project was carried out using literature methods, information regarding these procedures can be found in the accompanying appendices on Page 246.
4.1 - Synthesis of cis-cyclopropane methoxy-mycolic acid (83)

Experiment 1: (16S,17S)-16-Methoxy-17-methyl-pentatriacontan-1-ol (107)

Lithium aluminium hydride (0.56 g, 16.10 mmol, 2.5 mol. equiv.) was added portionwise to a stirred THF (100 ml, HPLC grade) at -20 °C, where vigorous evolution of hydrogen was observed. A solution of (16S,17S)-16-methoxy-17-methyl-pentatriacontyl ester (106) (4.10 g, 164.0 mmol) in THF (50 ml) was added dropwise to the above suspension at -20 °C and then the reaction mixture was refluxed for 2 hrs. When TLC analysis indicated completion of the reaction a freshly prepared solution of sat. aq. sodium sulfate (40 ml) was added at -20 °C, where formation of a white precipitate was observed, and the reaction mixture stirred at RT for 2 hrs. The solution was filtered through a bed of silica gel and the solvent evaporated. The resulting solution was taken up in dichloromethane (100 ml) and washed with water (25 ml) and then dried. The solvent was evaporated and the crude product was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a white solid, (16S,17S)-16-methoxy-17-methyl-pentatriacontan-1-ol (107) (2.64 g, 79 %), which showed δ_H (500 MHz, CDCl₃): 3.72 (2H, t, J 6.65 Hz), 3.35 (3H, s), 3.00-2.95 (1H, m), 1.68-1.65 (1H, m), 1.60 (2H, pent, J 6.65 Hz), 1.48 (1H, br.s) 1.46-1.20 (59H, m), 1.16-1.06 (1H, m), 0.89 (3H, t, J 7 Hz) 0.86 (3H, d, J 6.65 Hz); δ_C (125 MHz, CDCl₃): 86.0, 63.0, 57.7, 35.4, 32.9, 32.4, 31.9, 30.5, 30.0, 29.9, 29.72, 29.68, 29.6, 29.5, 29.4, 27.6, 26.2, 25.7, 22.8, 15.0, 14.2; v_max: 3380, 2934, 1108, 1082 cm⁻¹; [α]_D²² = -8.23 (CHCl₃, 1.322 μmol); m.p. 46-48 °C; [Found M+Na⁺: 575.84; C₃₇H₇₆NaO₂ requires: 575.99].
Experiment 2: Butyric acid (1R,2S)-2-bromomethyl-cyclopropylmethyl ester (114)

Triphenylphosphine (10.7 g, 40.7 mmol, 1.15 mol. equiv.) was added to a stirred solution of butyric acid (1R,2S)-2-hydroxymethyl-cyclopropylmethyl ester (113) (6.05 g, 35.4 mmol) in dichloromethane (200 ml) and then sodium hydrogen carbonate (1.5 g) was added. The mixture was cooled to 0 °C and N-bromosuccinimide (8.0 g, 44.9 mmol, 1.27 mol. equiv.) was added portionwise over 10 mins at 0 – 4 °C. The reaction mixture was stirred for 1 hr at 0 – 3 °C, when TLC analysis indicated completion of the reaction sat. aq. sodium bisulfite (150 ml) was added and the mixture was extracted. The aqueous layer was re-extracted with dichloromethane (2 x 100 ml) and the combined organic layers washed with water (200 ml) and then dried. The solvent was evaporated and the crude product was taken up in petrol/ether (1:1, 200 ml) and stirred for 30 mins. The triphenylphosphonium oxide was filtered off and washed well with petrol/ether (1:1, 100 ml) and the solvent evaporated. The crude product was purified via column chromatography eluting with petrol/ether (4:1, then 2:1) to give a colourless oil, butyric acid (1R,2S)-2-bromomethyl-cyclopropylmethyl ester (114) (7.42 g, 90 %), which showed δH (500 MHz, CDCl3): 4.21 (1H, dd, J 6.9, 11.8 Hz), 4.05 (1H, dd, J 7.9, 11.8 Hz), 3.52 (1H, dd, J 7.5, 10.2 Hz), 3.40 (1H, dd, J 7.9, 11.8 Hz), 2.33 (2H, t, J 7.75 Hz), 1.62 (2H, sext, J 7.75 Hz), 1.52-1.32 (2H, m), 0.98 (1H, dt, J 5.2, 8.5 Hz), 0.92 (3H, t, J 7.6 Hz), 0.37 (1H, q, J 5.2 Hz); δC (125 MHz, CDCl3): 174.3, 63.5, 36.6, 34.5, 19.5, 18.7, 18.1, 14.1, 12.9; νmax: 2966, 2887, 1754, 1543, 1323, 1189, 1089 cm⁻¹; [α]D²² = -11.1 (CHCl₃, 0.984 µmol) [Found M+ : 235.1203; C₉H₁₅BrO₂ requires: 235.1211].
Experiment 3: Butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazol-5-ylsulfanylmethyl)-cyclopropylmethyl ester (115)

Butyric acid (1R,2S)-2-bromomethyl-cyclopropylmethyl ester (114) (7.42 g, 31.7 mmol) was added with vigorous stirring to 1-phenyl-1H-tetrazole-5-thiol (11.30 g, 63.4 mmol, 2 mol. equiv.) and potassium carbonate (8.75 g, 63.4 mmol, 2 mol. equiv.) in acetone (150 ml) and the reaction mixture was stirred for 18 hrs at RT. When TLC analysis indicated completion of the reaction water (1 l) was added and extracted with dichloromethane (4 x 100 ml) and the combined organic layers were washed with brine (2 x 300 ml). The organic extracts were dried and evaporated to give a crude product, which was purified via column chromatography eluting with petrol/ether (2:1, then 1:1) to give a yellow oil, butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazol-5-ylsulfanylmethyl)-cyclopropylmethyl ester (115) (10.03 g, 95 %), which showed δH (500 MHz, CDCl3): 7.62-7.51 (5H, m), 4.40 (1H, dd, J 6.7, 12.5 Hz), 3.99 (1H, dd J 9.2, 12.2 Hz), 3.56 (1H, dd, J 7.9, 13.2 Hz), 3.41 (1H, dd, J 7.9, 13.2 Hz), 2.30 (2H, t, J 7.5 Hz), 1.67 (2H, sext, J 7.5 Hz), 1.55 (1H, pent, J 5.6, 8.2 Hz), 1.45-1.38 (1H, m), 0.99 (1H, dt, J 5.5, 8.2 Hz), 0.93 (3H, t, J 7.2 Hz), 0.43 (1H, q, J 5.4 Hz); δC (125 MHz, CDCl3): 174.5, 154.3, 133.8, 130.1, 129.7, 123.8, 63.7, 36.2, 34.2, 18.4, 16.4, 15.5, 13.6, 11.0; v max: 2955, 2888, 1754, 1512, 1184, 989, 785 cm⁻¹; [α]²³D = -1.15 (CHCl₃, 1.012 µmol) [Found M⁺ : 332.4213; C₁₆H₂₀N₄O₂S requires: 332.4260].
Experiment 4: \((1S,2R)-1-(7\text{-bromoheptyl})-2-((17S,18S)-17\text{-methoxy-18-methylhexatriacontyl})\text{cyclopropane (119)}\)

Lithium \(\text{bis(trimethylsilyl)}\text{amide (4.18 ml, 4.44 mmol, 1.06 M) was added dropwise to a stirred solution of (1R,2S)-2-(7-bromoheptyl)\text{cyclopropanecarbaldehyde (92) (0.70 g, 2.84 mmol) and } 5-((16S,17S)-16\text{-methoxy-17-methylpentatriacontan-1-sulfonyl)-1-phenyl-1H-tetrazole (91) (2.48 g, 3.33 mmol) in dry THF (30 ml) under nitrogen at -15 °C. The mixture was allowed to reach RT and was then stirred for 18 hrs. When TLC analysis indicated completion of the reaction, sat. aq. ammonium chloride (30 ml) and petrol/ether (1:1, 50 ml) were added. The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 25 ml) and the combined organic extracts were washed with brine (25 ml), dried and evaporated. The resultant crude oil was purified via column chromatography eluting with petrol/ether (9:1) to give a viscous oil, \((1S,2R)-1-(7\text{-bromoheptyl})-2-((E/Z)-(17S,18S)-17\text{-methoxy-18-methylhexatriacont-1-enyl})\text{cyclopropane (1.54 g, 72 %). Dipotassium azodicarboxylate (4.97 g, 25.6 mmol) was added to a stirred solution of (1S,2R)-1-(7-bromoheptyl)-2-((E/Z)-(17S,18S)-17\text{-methoxy-18-methylhexatriacontyl})\text{cyclopropane (0.64 g, 0.85 mmol) in THF (20 ml) and methanol (10 ml) at 10 °C under nitrogen resulting in a yellow precipitate. A solution of glacial acetic acid (3 ml) and THF (6 ml) was added dropwise over 16 hrs, after which a white precipitate had formed. The mixture was cooled to 0 °C and poured slowly into sat. aq. sodium hydrogen carbonate (10 ml) and the product was extracted with petrol/ether (1:1, 3 x 50 ml). The combined organic extracts were washed with water (30 ml), dried and evaporated to give a thick oil which later solidified. The residue was then purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, \((1S,2R)-1-(7\text{-bromoheptyl})-2-((17S,18S)-17\text{-methoxy-18-methylhexatriacontyl})\text{cyclopropane (119) (0.42 g, 66 %), which showed } \delta_H (500 \text{ MHz, CDCl}_3): 3.42 (2H, t, J 7 \text{ Hz}), 3.34 (3H, s), 2.99-2.93 (1H, m), 1.87 (2H, pent, J 6.7 \text{ Hz}), 1.66-1.61 (1H, m), 1.50-1.25\)
(72H, m), 1.17-1.06 (4H, m), 0.9 (3H, t, J 7 Hz), 0.88 (3H, d, J 7 Hz), 0.75-0.65 (2H, m), 0.61 (1H, dt, J 4, 8 Hz), -0.33 (1H, dt, J 4 Hz); δC (125 MHz, CDCl₃): 85.4, 57.7, 35.3, 34.0, 32.8, 32.3, 31.9, 30.4, 29.9, 29.7, 29.4, 29.3, 28.8, 28.7, 28.6, 28.2, 27.6, 26.1, 24.1, 22.7, 15.8, 15.7, 14.9, 14.1, 10.9; ν max: 2854, 1465, 1099, 760 cm⁻¹; [α]D²⁷ = -3.40 (CHCl₃, 0.786 µmol); m.p. 31-33 °C; [Found M+Na⁺: 789.48; C₄₈H₹₅NaOBr requires: 789.65].
Experiment 5: 5-[7-[1S,2R]-2-((17S,18S)-17-Methoxy-18-methyl-hexatriacontyl)cyclopropyl]heptylsulfanyl]-1-phenyl-1H-tetrazole (125)

(1S,2R)-1-(7-Bromoheptyl)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl) cyclopropane (119) (0.3 g, 0.39 mmol) in THF (5 ml) was added to a stirred solution of 1-phenyl-1H-tetrazole-5-thiol (0.10 g, 0.58 mmol, 1.5 mol. equiv.) and anhydrous potassium carbonate (0.21 g, 1.52 mmol, 3.9 mol. equiv.) in acetone (15 ml) at RT. The reaction mixture was stirred for 18 hrs; when TLC analysis indicated completion of the reaction, the mixture was diluted with water (20 ml) and dichloromethane (50 ml). The aqueous layer was re-extracted with dichloromethane (2 x 10 ml). The combined organic extracts were washed with brine (2 x 20 ml), dried and evaporated. The resultant residue was then purified via column chromatography eluting with petrol/ether (5:1) to give a white solid, 5-[7-[1S,2R]-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl)-cyclopropyl]-heptylsulfanyl]-1-phenyl-1H-tetrazole (125) (0.23 g, 67 %), which showed δ_{H} (500 MHz, CDCl$_3$): 7.67-7.58 (5H, m), 3.44 (2H, t, J 7.2 Hz), 3.33 (3H, s), 2.99-2.92 (1H, m), 1.88 (2H, pent, J 7.5 Hz), 1.66-1.62 (1H, m), 1.49-1.23 (72H, m), 1.19-1.08 (4H, m), 0.90 (3H, t, J 7 Hz), 0.87 (3H, d, J 6 Hz) 0.68-0.61 (2H, m), 0.56 (1H, dt, J 4, 7.8 Hz), -0.33 (1H, dt, J 5 Hz); δ_{C} (125 MHz, CDCl$_3$): 154.3, 134.1, 129.9, 129.7, 123.9, 85.5, 57.7, 35.4, 33.4, 32.4, 31.9, 30.5, 30.2, 30.1, 30.0, 29.9, 29.71, 29.68, 29.6, 29.4, 29.3, 29.1, 29.08, 28.7, 28.6, 27.6, 26.2, 22.7, 15.8, 15.7, 14.9, 14.1, 10.9; ν_{max}: 2934, 2834, 1519, 1443, 1076 cm$^{-1}$; [α]$^2_{\text{D}}$ = -4.1 (CHCl$_3$, 0.769 µmol); m.p. 36-38 °C; [Found M+Na$: 887.51; C_{55}H_{100}NaNaOS requires: 887.75$]
Experiment 6: 5-(7-[1S,2R]-2-((17S,18S)-17-Methoxy-18-methyl-hexatriacontyl)-cyclopropyl)-heptylsulfonyl)-1-phenyl-1H-tetrazole (89)

\[
\text{CH}_3(\text{CH}_2)_{17} \quad \overset{\text{OMe}}{\text{(CH}_2)_{16}} \quad \overset{\text{S}}{\text{(CH}_2)_{7}} \quad \overset{\text{N}}{\text{N}} \quad \overset{\text{Ph}}{\text{O}}
\]

\(m\)-Chloroperoxybenzoic acid (125.70 mg, 0.73 mmol, 3 mol. equiv) in dichloromethane (2 ml) was added slowly to a stirred solution of 5-(7-[1S,2R]-2-((17S,18S)-17-methoxy-18-methyl-hexatriacontyl)-cyclopropyl)-heptylsulfonyl)-1-phenyl-1H-tetrazole (125) (209.40 mg, 0.24 mmol) and sodium hydrogen carbonate (91.80 mg, 1.09 mmol, 4.5 mol. equiv.) in dichloromethane (2 ml) at 5 °C. The mixture was stirred for 18 hrs at RT, when TLC analysis indicated completion of the reaction the solvent was evaporated. The resultant residue was diluted with ethyl acetate (5 ml) and slowly quenched with sat. aq. sodium metabisulfite (2 ml). The aqueous layer was re-extracted with ethyl acetate (2 x 10 ml) and the combined organic extracts were washed with sat. aq. sodium hydrogen carbonate (10 ml) and then water (20 ml). The organic extract was then dried and evaporated and the resultant yellow oil purified by column chromatography eluting with petrol/ether (1:1) to give a white solid, 5-(7-[1S,2R]-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclo-propyl)-heptylsulfonyl)-1-phenyl-1H-tetrazole (89) (140.00 mg, 65 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)): 7.70-7.68 (2H, dd, J 1.2, 7.8 Hz), 7.63-7.56 (3H, m), 3.75 (2H, t, J 8 Hz), 3.40 (3H, s) 2.95-2.92 (1H, pent, J 4 Hz), 1.99 (2H, pent J 7.5 Hz), 1.66-1.62 (1H, m), 1.55 (2H, pent, J 7.5 Hz), 1.49-1.20 (70H, m), 1.18-1.04 (4H, m), 0.90 (3H, t, J 7 Hz), 0.88 (3H, d, J 7 Hz), 0.70-0.65 (2H, m), 0.59 (1H, dt, J 4, 8 Hz), -0.32 (1H, dt, J 5 Hz); \(\delta_C\) (125 MHz, CDCl\(_3\)): 154.7, 133.5, 131.9, 129.8, 125.2, 86.0, 57.8, 56.1, 35.5, 32.5, 32.0, 30.5, 30.2, 30.0, 29.9, 29.72, 29.70, 29.3, 29.2, 28.9, 28.7, 28.6, 28.1, 27.6, 26.2, 22.7, 22.0, 15.8, 15.7, 14.8, 14.1, 10.9; \(\nu_{\text{max}}\): 2913, 1609, 1541, 1474, 1367, 1183, 1105, 782 cm\(^{-1}\); \([\alpha]_{D}^{23} = -4.67\) (CHCl\(_3\), 0.983 \(\mu\)mol); m.p. 38-40 °C; [Found M+Na\(^+\): 919.63; C\(_{55}\)H\(_{100}\)N\(_4\)NaO\(_3\)S requires: 919.74].
Experiment 7: (R)-2-[(R)-1-(tert)-Butyldimethylsilanyloxy)-11-(2,2-dimethylpropionyloxy)undecyl]hexacosanoic acid methyl ester (130)

Lithium bis(trimethylsilyl)amide (2.41 ml, 2.56 mmol, 1.06 M) was added dropwise to a stirred solution of (R)-2-[(R)-1-(tert-butyldimethylsilanyloxy)-3-oxo-propyl]-hexacosanoic acid methyl ester (128) (1.00 g, 1.64 mmol) and 2,2-dimethylpropionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) (0.83 g, 1.97 mmol, 1.2 mol. equiv.) in dry THF (35 ml) at -15 °C. The mixture was then stirred for 18 hrs at RT; when TLC analysis indicated completion of the reaction, sat. aq. ammonium chloride (25 ml) and petrol/ether (1:1, 50 ml) were added. The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 50 ml) and the combined organic extracts washed with brine (50 ml), dried and evaporated to give a yellow oil. The crude product was purified via column chromatography eluting with petrol/ether (9:1) to give a colourless oil, (E/Z)-(R)-3-(tert-butyl-dimethyl-silanyloxy)-13-(2,2-dimethyl-propionyloxy)-2-tetracosyl-tridec-5-enoic acid methyl ester (129) (0.92 g, 70 %). Palladium on charcoal (10 %, 0.25 g) was added to a stirred solution of (E/Z)-(R)-3-(tert-butyl-dimethyl-silanyloxy)-13-(2,2-dimethyl-propionyloxy)-2-tetracosyl-tridec-5-enoic acid methyl ester (129) (0.92 g, 1.03 mmol) in IMS (25 ml) and THF (5 ml). The mixture was stirred while being hydrogenated at atmospheric pressure, when hydrogen absorption was complete the mixture was filtered through a pad of celite and washed with THF (100 ml). The filtrate was evaporated to give a colourless oil, (R)-2-[(R)-1-(tert)-butyldimethylsilanyloxy)-11-(2,2-dimethylpropionyloxy)undecyl]hexacosanoic acid methyl ester (130) (0.92, 99.9 %), which showed δH (500 MHz, CDCl3): 4.06(2H, t, J 6.5 Hz), 3.94-3.87 (1H, m), 3.66 (3H, s), 2.55-2.50 (1H, m), 1.66-1.24 (64H, m), 1.21 (9H, s), 0.88 (3H, t, J 7 Hz), 0.86 (9H, s) 0.05 (3H, s), 0.03 (3H, s); δC (125 MHz, CDCl3): 178.9, 175.1, 73.2, 64.5, 51.6, 51.2, 38.7, 33.7, 31.9, 29.9, 29.7, 29.62, 29.57, 29.51, 29.46, 29.4, 29.3, 29.2, 28.6, 27.8, 27.5, 27.2, 25.9, 25.81, 25.79, 23.7, 22.7, 17.9, 14.1, -4.4, -4.9; v
\max: 2943, 2876, 1743, 1467, 1154 cm$^{-1}$; $[^{\alpha}_2]D = -3.21$ (CHCl$_3$, 1.323 µmol) [Found M+Na$^+$: 817.64; C$_{49}$H$_{98}$NaO$_5$S requires: 817.71].
Experiment 8: \((R)-2-[(R)-1-(\text{tert-Butyldimethylsilanyloxy})-11-hydroxyundecyl]-\text{hexacosanoic acid methyl ester (131)}

\[(R)-2-[(R)-1-(\text{tert-Butyldimethylsilanyloxy})-11-(2,2-dimethylpropionyloxy)}\text{undecyl]}\text{hexacosanoic acid methyl ester (130)} (0.74 g, 0.93 mmol) in THF (5 ml) was added to a stirred solution of potassium hydroxide (0.78 g, 14.00 mmol, 15 mol. equiv.) in THF (20 ml), methanol (10 ml) and water (2 ml). The mixture was heated to 70 °C and reflux was maintained for 2 hrs. When TLC analysis indicated completion of the reaction, the mixture was quenched with water (10 ml) and the aqueous layer extracted with ethyl acetate (3 x 40 ml). The combined organic extracts were dried and evaporated and the crude product purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, \((R)-2-[(R)-1-(\text{tert-butyltrimethylsilanyloxy})-11-hydroxyundecyl]hexacosanoic acid methyl ester (131) (0.42 g, 63 %), which showed \(\delta_H (500 \text{ MHz, CDCl}_3): 3.92-3.88 (1H, m), 3.65 (3H, s), 3.62 (2H, t, J 6.5 Hz), 2.55 (1H, ddd, J 3.7, 7, 11 Hz), 1.65-1.20 (65H, m), 0.90 (3H, t J 7 Hz), 0.86 (9H, s), 0.05 (3H, s), 0.03 (3H, s); \delta_C (125 \text{ MHz, CDCl}_3): 175.1, 73.2, 63.1, 51.6, 51.2, 33.7, 32.8, 31.9, 29.8, 29.7, 29.62, 29.58, 29.5, 29.42, 29.40, 29.3, 27.9, 27.5, 25.8, 25.7, 23.8, 22.7, 18.0, 14.1, -4.4, -4.9; \nu_{\text{max}}: 3323, 2943, 2854, 1753, 1434 \text{ cm}^{-1}; [\alpha]_{23}^D = -5.04 (\text{CHCl}_3, 1.232 \mu\text{mol}) [\text{Found M+Na}^+: 733.60; C_{44}H_{90}NaO_4Si requires: 733.65].\)
Experiment 9: \((R)-2-[(R)-1-(\text{tert-Butyldimethylsilanyloxy})-11-oxoundecyl]\)-hexacosanoic acid methyl ester (90)

\[(R)-2-[(R)-1-(\text{tert-Butyldimethylsilanyloxy})-11-hydroxyundecyl]\]hexacosanoic acid methyl ester (131) (200.0 mg, 0.28 mmol) in dichloromethane (3 ml) was added to a stirred suspension of pyridinium chlorochromate (152.0 mg, 0.706 mmol, 2.5 mol. equiv.) in dichloromethane (10 ml) at RT. The mixture was stirred vigorously for 2 hrs, when TLC analysis indicated completion of the reaction. The mixture was diluted with ether (50 ml) and filtered through a bed of silica gel. The filtrate was evaporated to give a residue which was purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, \((R)-2-[(R)-1-(\text{tert-butyldimethylsilanyloxy})-11-oxoundecyl]\)hexacosanoic acid methyl ester (90) (0.2 g, 99.7 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)): 9.78 (1H, t, J 2 Hz), 3.94-3.90 (1H, m), 3.71 (3H, s), 2.55 (1H, ddd, J 11, 7 , 4Hz), 2.43 (2H, dt, J 2, 7.5 Hz), 1.65 (2H, pent, J 6.5 Hz), 1.54-1.21 (60H, m), 0.90 (3H, t, J 7 Hz), 0.88 (9H, s), 0.05 (3H, s), 0.03 (3H, s); \(\delta_C\) (125 MHz, CDCl\(_3\)): 202.8, 175.1, 73.2, 51.6, 51.2, 43.9, 33.7, 31.9, 29.8, 29.7, 29.63, 29.59, 29.5, 29.42, 29.38, 29.3, 29.2, 27.9, 27.5, 25.8, 23.8, 22.7, 22.1, 18.0, 14.1, -4.4, -4.9; \(\nu_{\text{max}}\) 2943, 2843, 1784, 1423 cm\(^{-1}\); \([\alpha]_D^{22} = -4.21\) (CHCl\(_3\), 1.184 µmol) [Found M+Na\(^+\): 731.61; C\(_{44}\)H\(_{88}\)NaO\(_4\)Si requires: 731.63].
Experiment 10: (R)-2-((R)-1-(tert-Butyldimethylsilanyloxy)-18-[(1S,2R)-2-(17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid methyl ester (133)

Lithium bis(trimethylsilyl)amide (0.20 ml, 0.2091 mmol, 1.06 M 1.5 mol. equiv.) was added dropwise to a stirred solution of (R)-2-[(R)-1-(tert-butyldimethylsilanyloxy)-11-oxoundecyl]hexacosanoic acid methyl ester (90) (130 mg, 0.1829 mmol, 1.3 mol. equiv.) and 5-(7-[1S,2R]-(2-[(17S,18S)-17-methoxy-18-methyl-hexatriacontyl]-cyclopropyl)-heptylsulfonyl)-1-phenyl-1H-tetrazole (89) (125 mg, 0.1393 mmol) in dry THF (4 ml) under nitrogen at -12 °C. The reaction was allowed to reach RT. When TLC analysis indicated completion of the reaction, sat. aq. ammonium chloride (20 ml) was added and the aqueous layer was extracted with petrol/ether (1:1, 3 x 20 ml). The combined organic extracts were dried and evaporated, the crude product was purified via column chromatography eluting with petrol/ether (20:1) to give a colourless oil, (E/Z)(R)-2-((R)-1-(tert-butyldimethylsilanyloxy)-18-[(1S,2R)-2-((17S,18S)-17-methoxy-18-methyl-hexatriacontyl)cyclopropyl]-octadec-11-enyl)hexacosanoic acid methyl ester (132) (125 mg, 65 %). Hydrogenation was carried out with dipotassium azocarboxylate as before and the crude product was purified via column chromatography eluting with petrol/ether (20:1) to give a colourless oil, (R)-2-((R)-1-(tert-butyldimethylsilanyloxy)-18-[(1S,2R)-2-((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]-octadecyl)hexacosanoic acid methyl ester (133) (108.1 mg, 86 %), which showed δH (500 MHz, CDC13): 3.95-3.89 (1H, m), 3.65 (3H, s), 3.36 (3H, s), 3.00-2.96 (1H, m), 2.55 (1H, ddd, J 4,7,11 Hz), 1.67-1.09 (147H, m), 0.96-0.84 (18H, m), 0.71-0.67 (2H, m), 0.60 (1H, dt, J 3.78, 7.65 Hz), 0.05 (3H, s), 0.03 (3H, s), -0.32 (1H, dt, J 5 Hz); δC (125 MHz, CDC13): 175.1, 85.5, 73.2, 57.7, 51.6, 51.2, 35.4, 33.7, 32.4, 31.9, 30.5, 30.2, 30.0, 29.9, 29.8, 29.7, 29.62, 29.59, 29.43, 29.40, 28.7, 27.8, 27.6, 27.5, 26.2, 25.8, 23.7, 22.7, 18.0, 15.8, 14.9, 14.1, 10.9, -4.4, -4.9; v
max: 2921, 2876, 1763, 1465, 1102 cm\(^{-1}\); \([\alpha]^{27}_D = +1.16\) (CHCl\(_3\), 0.897 \(\mu\)mol) [Found M+Na\(^{+}\): 1404.25; C\(_{92}H_{184}NaO_4Si\) requires: 1404.39].
Experiment 11: (R)-2-((R)-1-Hydroxy-18-[(1S, 2R)-2((17S, 18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid methyl ester (135)

A dry polyethylene vial equipped with a rubber septum was charged with (R)-2-((R)-1-(tert-butyldimethylsilanyloxy)-18-[(1S,2R)-2((17S, 18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid methyl ester (133) (108.90 mg, 0.0776 mmol) in dry THF (4 ml) under nitrogen at 0 °C. Pyridine (0.3 ml) and hydrogen fluoride-pyridine complex (0.33 ml, 0.2327 mmol, 3 mol. equiv.) were added and the mixture stirred for 18 hrs at 43 °C. When TLC analysis indicated completion of the reaction, the mixture was neutralised by slowly pouring the mixture into sat. aq. sodium hydrogen carbonate (10 ml) until no more carbon dioxide was liberated. The product was extracted with petrol/ether (5:2, 3 x 25 ml), dried and evaporated to give a white solid. This was purified via column chromatography eluting with petrol/ether (5:1) to give a white solid, (R)-2-((R)-1-hydroxy-18-[(1S,2R)-2((17S, 18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid methyl ester (135) (77.2 mg, 79 %), which showed δH (500 MHz, CDCl3): 3.74 (3H, s), 3.66-3.62 (1H, m), 3.34 (3H, s), 2.98-2.95 (1H, m), 2.45 (1H, dt, J 5.5, 9.5 Hz), 1.76-1.03 (148H, m), 0.92-0.83 (9H, m), 0.69-0.62 (2H, m), 0.60 (1H, dt, J 4, 8.1 Hz), -0.31 (1H, dt, J 5 Hz); δC (125 MHz, CDCl3): 176.1, 85.4, 72.3, 57.7, 51.5, 50.9, 35.7, 35.4, 32.4, 31.9, 30.5, 30.2, 30.0, 29.9, 29.7, 29.64, 29.61, 29.59, 29.57, 29.53, 29.48, 29.42, 29.37, 28.7, 27.6, 27.4, 27.2, 25.7, 22.7, 15.8, 14.9, 14.1, 10.9; νmax: 3342, 2923, 2843, 1715, 1435 cm⁻¹; [α]D²⁶ = +1.04 (CHCl₃, 0.989 µmol); m.p. = 62 - 65 °C [Found M+Na⁺: 1290.26; C₈₆H₁₇₀NaO₄ requires: 1290.30].
Experiment 12: (R)-2-[(R)-1-Hydroxy-18-[(1S,2R)-2((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl]-hexacosanoic acid (83)

Lithium hydroxide monohydrate (38.7 mg, 1.614 mmol, 30 mol. equiv.) was added to a stirred solution of (R)-2-((R)-1-hydroxy-18-[(1S,2R)-2((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid methyl ester (135) (68.0 mg, 0.0538 mmol) in THF (5 ml), methanol (0.5 ml) and water (0.5 ml) at RT. The mixture was stirred at 43 °C for 18 hrs, when TLC analysis indicated completion of the reaction. The mixture was cooled to RT and acidified with hydrochloric acid (5 %, 2 ml) and the aqueous layer extracted with warm petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and then purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, (R)-2-((R)-1-hydroxy-18-[(1S,2R)-2((17S,18S)-17-methoxy-18-methylhexatriacontyl)cyclopropyl]octadecyl)-hexacosanoic acid (83) (24.0 mg, 63 %), which showed δH (500 MHz, CDCl3): 3.77-3.69 (1H, m), 3.35 (3H, s), 2.99-2.96 (1H, m), 2.46 (1H, dt, J 5.26, 9.31), 1.78-1.70 (1H, m), 1.68-1.60 (2H, m), 1.56-1.03 (14H, br. m including br. s at 1.26), 0.89 (6H, t, J 6.86 Hz), 0.85 (3H, d, J 6.9 Hz), 0.68-0.62 (2H, m), 0.56 (1H, dt, J 4, 8.15 Hz), -0.32 (1H, dt, J 5 Hz); δC (125 MHz, CDCl3): 178.9, 85.6, 72.1, 57.7, 50.7, 35.6, 35.3, 32.4, 31.9, 30.5, 30.3, 30.2, 29.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 28.7, 27.6, 27.3, 26.1, 22.7, 18.0, 15.8, 14.9, 14.1, 10.9; νmax: 3521, 2923, 2854, 1713, 1459 cm⁻¹; [α]D²⁰ = +1.17 (CHCl₃, 0.496 μmol): m.p. 65-67 °C; [Found M+Na⁺: 1276.12; C₈₅H₁₆₈NaO₄ requires: 1276.28].
4.2 – Synthesis of α-methyl trans-cyclopropane methoxy-mycolic acid (84)

Experiment 13: (15S, 16S)-15-Methoxy-16-methyltetraacontyl pivalate (147)

A solution of (8S,9S)-8-methoxy-9-methylheptacosanal (95) (1.56 g, 3.56 mmol) and 2,2-dimethylpropionic acid-7-(1-phenyl-1H-tetrazol-5-ylsulfonyl)-heptyl ester (146) (1.74 g, 4.27 mmol) in dry THF (50 ml) was stirred under nitrogen at -10 °C. Lithium bis(trimethylsilyl)amide (5.24 ml, 5.56 mmol, 1.06 M) was added dropwise between -12 °C and -5 °C, the solution was stirred for 18 hrs. When TLC showed no starting material was left, dichloromethane (50 ml) and sat. aq. ammonium chloride (50 ml) were added. The aqueous layer was re-extracted with further dichloromethane (2 x 100 ml) and the combined organic layers were dried and evaporated to give a crude product. This was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, (E/Z)-2,2-dimethyl-propionic acid 15-methoxy-16-methyl-tetratriacont-7-enyl ester (1.78 g, 81 %). Palladium on charcoal (0.2 g, 10%) was added to a stirred solution of the above product (1.78 g, 2.87 mmol) in THF (5 ml) and IMS (40 ml). The mixture was stirred while being hydrogenated at atmospheric pressure. When no more hydrogen was being absorbed the catalyst was removed via suction filtration through a pad of celite and was washed with THF (50 ml). The filtrate was evaporated to give a colourless oil, (15S,16S)-15-methoxy-16-methyltetraacontyl pivalate (147) (1.57 g, 88 %), which showed δH (500 MHz, CDCl3): 4.04 (2H, t, J 6.6 Hz), 3.34 (3H, s), 3.02-2.96 (IH, m), 1.66 (2H, pent, J 6.6 Hz), 1.55-1.28 (58H, m), 1.24 (9H, s), 1.14-1.03 (1H, m), 0.93 (3H, t, J 6.6 Hz), 0.90 (3H, d, J 7.0 Hz); δc (125 MHz, CDCl3): 178.3, 85.5, 64.5, 57.7, 35.4, 32.4 31.9, 30.9, 30.5, 29.92, 29.89, 29.7, 29.6, 29.5, 29.4, 29.3, 28.6, 27.6, 26.1, 26.0, 22.4, 14.8, 14.1; νmax: 2935, 1749, 1134 cm⁻¹; [α]D²² = -6.7 (CHCl₃, 1.245 μmol) [Found M+Na+: 645.49; C₄₁H₈₂NaO₃ requires: 645.62].
Experiment 14: (15S, 16S)-15-Methoxy-16-methyl-tetratriacontan-l-ol (148)

Lithium aluminium hydride (0.14 g, 3.79 mmol) was added to THF (20 ml) stirred at -20 °C under nitrogen. A solution of (15S, 16S)-15-methoxy-16-methyl-tetratriacontyl pivalate (147) (1.57 g, 2.52 mmol) in THF (10 ml) was added slowly and allowed to reach RT, then refluxed for 1 hr. When TLC showed no starting material was left the reaction was cooled to -20 °C and was quenched with sat. aq. sodium sulfate until a white precipitate formed. THF (30 ml) was added and the mixture was stirred for 30 mins, filtered through a bed of silica gel and the solvent evaporated. The resulting solution was taken up in dichloromethane (50 ml) and washed with water (10 ml) and then dried. The solvent was evaporated and the crude product was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a white solid, (15S, 16S)-15-methoxy-16-methyl-tetratriacontan-1-ol (148) (1.04 g, 79 %), which showed δH (500 MHz, CDCl3): 3.70 (2H, t, J 6.6 Hz), 3.33 (3H, s), 3.01-2.96 (1H, m), 1.66-1.64 (1H, m), 1.61 (2H, pent, J 6.6 Hz), 1.47 (1H, br.s) 1.47-1.20 (56H, m), 1.16-1.04 (1H, m), 0.90 (3H, t, J 7 Hz) 0.88 (3H, d, J 6.6 Hz); δc (125 MHz, CDCl3): 86.2, 63.1, 57.8, 35.6, 32.8, 32.6, 32.0, 30.7, 30.2, 30.0, 29.8, 29.7, 29.6, 29.5, 29.4, 27.5, 26.3, 25.8, 22.9, 14.9, 14.1; νmax: 3376, 2929, 1103, 1080 cm⁻¹; [α]D²⁰ = -8.97 (CHCl₃, 1.217 µmol); m.p. 46-48 °C; [Found M+Na⁺: 561.43; C₃₆H₇₄NaO₂ requires: 561.56].
Experiment 15: (15S,16S)-1-Bromo-15-methoxy-16-methyl-tetratriacontane
(149)

N-Bromosuccinimide (0.44 g, 2.46 mmol, 1.3 mol. equiv.) was added in portions over 15 mins to a stirred solution of (15S,16S)-15-methoxy-16-methyl-tetratriacontan-1-ol (148) (1.04 g, 1.89 mmol) and triphenylphosphine (0.56 g, 2.14 mmol, 1.13 equiv) in dichloromethane (20 ml) at 0 °C. The mixture was stirred at RT for 1 hr, when TLC analysis indicated completion of the reaction. It was quenched with sat. aq. sodium meta-bisulfite (25 ml) then the aqueous layer was re-extracted with dichloromethane (2 x 20 ml) and the combined organic extracts washed with water (50 ml), dried and evaporated to give a residue. This residue was treated with petrol/ether (1:1, 50 ml), refluxed for 30 mins and then filtered and washed with petrol/ether (1:1, 25 ml). The filtrate was evaporated and the resultant residue purified via column chromatography eluting with petrol/ether (10:1) to give a white solid, (15S,16S)-1-bromo-15-methoxy-16-methyl-tetratriacontane (149) (0.76 g, 83 %), which showed δ_H (500 MHz, CDCl₃): 3.46 (2H, t, J 6.8 Hz), 3.39 (3H, s), 3.03-2.98 (1H, m), 1.91 (2H, pent., J 6.8 Hz), 1.71-1.65 (1H, m), 1.52-1.26 (58H, m), 0.91 (3H, t, J 6.4 Hz), 0.88 (3H, d, J 6.8 Hz); δ_C (125 MHz, CDCl₃): 85.8, 57.9, 35.3, 34.2, 32.9, 32.6, 31.9, 30.8, 30.3, 29.9, 29.7, 29.6, 29.52, 29.48, 29.4, 28.9, 28.4, 27.7, 26.3, 22.8, 14.9, 14.4; ν_max: 2943, 2868, 1123, 743 cm⁻¹; [α]_D²⁰⁻ = -7.74 (CHCl₃, 1.254 µmol); m.p. 38-40 °C; [Found M+Na⁺: 623.28; C₃₆H₇₃NaOBr requires: 623.47].
Experiment 16: 5-((15S,16S)-15-Methoxy-16-methyltetracontyl-1-sulfanyl)-1-phenyl-1H-tetrazole (150)

(15S,16S)-1-Bromo-15-methoxy-16-methyl-tetratriacontane (149) (0.70 g, 1.14 mmol) in THF (3 ml) and acetone (3 ml) was added to a stirred solution of 1-phenyl-1H-tetrazole-5-thiol (0.22 g, 1.26 mmol, 1.1 mol. equiv.) and anhydrous potassium carbonate (0.55 g, 4.00 mmol, 3.5 mol. equiv.) in acetone (15 ml) at RT. The mixture was stirred at RT for 18 hrs, then the solvent was evaporated and the residue was diluted with petrol/ether (1:1, 20 ml) and water (20 ml). The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 10 ml). The combined organic extracts were dried and evaporated to give a crude oil which was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 5-((15S,16S)-15-methoxy-16-methyl-tetratriacontyl-1-sulfanyl)-1-phenyl-1H-tetrazole (150) (0.76 g, 93 %), which showed δ_H (500 MHz, CDCl$_3$): 7.64-7.51 (5H, m), 3.39 (2H, t, J 7.3 Hz), 3.30 (3H, s), 2.99-2.94 (1H, m), 1.82 (2H, pent, J 7.4 Hz), 1.67-1.60 (1H, m), 1.49-1.20 (58H, m), 0.91 (3H, t, J 6.55 Hz), 0.87 (3H, d, J 6 Hz); δ_C (125 MHz, CDCl$_3$): 154.5, 130.1, 129.8, 123.9, 85.5, 57.7, 35.3, 30.5, 30.0, 29.6, 29.5, 29.1, 28.7, 26.2, 22.7, 14.9, 14.1; ν_{max}: 2926, 2861, 1098 cm$^{-1}$; $[\alpha]_{D}^{21} = -6.49$ (CHCl$_3$, 1.106 μmol) [Found M+Na$: 721.44$; $C_{43}H_{78}N_{4}NaOS$ requires: 721.58].
Experiment 17: 5-((15S,16S)-15-Methoxy-16-methyltetracontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141)

\[
\text{CH}_3(\text{CH}_2)_{17} - \text{OMe} - (\text{CH}_2)_{14} - \text{SO} - \text{N} - \text{N} - \text{N} - \text{N} - \text{Ph}
\]

\(m\)-Chloroperoxybenzoic acid (0.52 g, 3.04 mmol, 3 mol. equiv.) in dichloromethane (5 ml) was added slowly to 5-((15S,16S)-15-methoxy-16-methyltetracontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (150) (0.72 g, 1.01 mmol) and sodium hydrogen carbonate (0.38 g, 4.56 mmol, 4.5 mol. equiv.) in dichloromethane (5 ml) at 5 °C. The mixture was stirred for 18 hrs at RT, when TLC analysis indicated completion of the reaction. The solvent was evaporated and the resultant residue was diluted with ethyl acetate (5 ml) and slowly quenched with sat. aq. sodium metabisulfite (2 ml). The aqueous layer was re-extracted with ethyl acetate (2 x 10 ml) and the combined organic extracts were washed with sat. aq. sodium hydrogen carbonate (10 ml) and water (20 ml). The organic extract was then dried and evaporated and the resultant yellow oil purified via column chromatography eluting with petrol/ether (1:1) to give a white solid, 5-((15S,16S)-15-methoxy-16-methyltetracontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141) (0.67 g, 89 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)): 7.71-7.70 (2H, m), 7.69-7.61 (3H, m), 3.74 (2H, t, \(J 7.9\) Hz), 3.34 (3H, s), 2.97-2.95 (1H, m), 1.96 (2H, pent, \(J 7.9\) Hz), 1.63-1.58 (1H, m), 1.50 (2H, pent, \(J 7.6\) Hz), 1.45-1.22 (56H, m), 0.89 (3H, t, \(J 6.6\) Hz), 0.85 (3H, d, \(J 6.7\) Hz); \(\delta_C\) (125 MHz, CDCl\(_3\)): 153.5, 133.1, 131.5, 130.3, 125.1, 85.5, 57.7, 56.0, 35.3, 32.4, 31.9, 30.5, 30.0, 29.9, 29.7, 29.7, 29.62, 29.60, 29.5, 29.4, 29.2, 28.9, 26.5, 22.8, 22.0, 15.1, 14.4; \(v_{\text{max}}\): 2947, 2852, 1321, 1164, 1097 cm\(^{-1}\); [\(\alpha\)]\(_D\) = -6.28 (CHCl\(_3\), 1.024 \(\text{mol}^{-1}\)); m.p. 42-44 °C; [Found M+Na\(^+\): 753.50; \(\text{C}_{43}\text{H}_{78}\text{N}_4\text{NaO}_3\text{S}\) requires: 753.57].
Experiment 18: 9-((1S,2R)-2-((S)-4-(tert-Butyldiphenylsilyloxy)butan-2-yl)cyclopropyl)nonyl pivalate (143)

Lithium bis(trimethylsilyl)amide (7.76 ml, 8.22 mmol, 1.06M) was added dropwise to a stirred solution of 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) (2.67 g, 6.32 mmol) and (1S,2R)-2-((S)-4-(tert-butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (144) (1.93 g, 5.27 mmol) in dry THF (50 ml) under nitrogen at -20 °C. The temperature rose to -10 °C during the addition of the base, and a yellow solution resulted. The mixture was allowed to reach RT and was stirred for 2 hrs, when TLC showed no starting material was left and then cooled to 0 °C and quenched with sat. aq. ammonium chloride (100 ml). The product was extracted with petrol/ether (1:1, 3 x 50 ml). The combined organic layers were washed with brine (100 ml), dried and evaporated to give an oil, which was purified via column chromatography eluting with petrol/ether (7:1) to give (E/Z)-9-((1R,2S)-2-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)cyclopropyl)non-8-enyl pivalate (153) (2.28 g, 75 %). Dipotassium azodicarboxylate (45.20 g, 232.70 mmol) was added to a stirred solution of (153) (4.47 g, 7.76 mmol) in THF (200 ml) and methanol (100 ml) at 10 °C under nitrogen, giving a yellow precipitate. A solution of glacial acetic acid (10 ml) and THF (20 ml) was added dropwise over 48 hrs, after which a white precipitate had formed. The mixture was cooled to 0 °C and poured slowly into sat. aq. sodium hydrogen carbonate (50 ml) and then extracted with petrol/ether (1:1, 3 x 100 ml). The combined organic layers were washed with water (50 ml), dried and evaporated to give a thick oil which slowly solidified. The residue was purified by column chromatography eluting in petrol/ether (10:1) to give a colourless oil, 2,2-dimethyl-propionic acid 9-((1S,2R)-2-((S)-4-(tert-butyldiphenylsilyloxy)butan-2-yl)cycloprop-yl)nonyl pivalate (143) (4.14 g, 93 %), which showed δH (500 MHz, CDCl3): 7.67-7.65 (4H, m), 7.40-7.37 (6H, m), 4.05 (2H, t, J 13.45 Hz), 3.77-3.72 (2H, m), 1.88-
1.79 (1H, m), 1.62-1.59 (2H, m), 1.50-1.44 (1H, m), 1.29-1.22 (16H, m), 1.21 (9H, s), 1.19-1.10 (1H, m), 1.04 (9H, s), 0.88 (3H, br.s), 0.49-0.42 (1H, m), 0.16-0.11 (1H, m); δC (125 MHz, CDCl3): 178.7, 135.7, 134.2, 129.5, 127.6, 64.5, 62.4, 40.2, 38.7, 34.8, 34.4, 29.8, 29.62, 29.58, 29.5, 29.2, 28.6, 27.2, 27.0, 25.8, 19.9, 19.3, 18.7, 10.6; νmax: 2930, 2578, 1743 cm⁻¹; [α]D²⁰ = +6.54 (CHCl₃, 1.054 µmol) [Found M+Na⁺: 601.38; C₃₇H₅₈NaO₃Si requires: 601.41].
Experiment 19: 9-((1S,2R)-2-((S)-4-Hydroxybutan-2-yl)cyclopropyl)nonyl pivalate (151)

9-((1S,2R)-2-((S)-4-(tert-Butyldiphenylsilyloxy)butan-2-yl)cyclopropyl)nonyl pivalate (143) (4.14 g, 7.16 mmol) was dissolved in dry THF (20 ml) in a polyethylene vial under nitrogen at RT. Pyridine (2 ml) and HF.Pyridine (10.23 ml, 7.16 mmol) were added and the mixture stirred for 17 hrs at 45 °C, when TLC showed no starting material was left. The mixture was diluted with petrol/ether (1:1, 20 ml) and neutralised with by adding to sat. aq. sodium hydrogen carbonate (25 ml) until no more carbon dioxide was liberated. The compound was extracted with petrol/ether (1:1, 2 x 50 ml) and washed with brine (100 ml), dried and evaporated. The resultant oil was purified via column chromatography eluting with petrol/ether (4:1) to give a colourless oil, 9-((1S,2R)-2-((S)-4-hydroxybutan-2-yl)cyclopropyl)nonyl pivalate (151) (1.92 g, 79 %), which showed δH (500 MHz, CDCl₃): 4.04 (2H, t, J 6.8 Hz), 3.77-3.72 (2H, m), 1.78-1.69 (1H, m), 1.63-1.59 (2H, m), 1.54-1.49 (1H, m), 1.39-1.26 (15H, m), 1.22 (9H, s), 1.17-1.09 (1H, m), 0.99 (3H, d, J 6.8 Hz), 0.90-0.85 (1H, m), 0.52-0.48 (1H, m), 0.31-0.16 (1H, m); δC (125 MHz, CDCl₃): 178.7, 64.5, 61.4, 40.4, 38.7, 35.0, 34.3, 34.4, 29.8, 29.62, 29.59, 29.5, 29.2, 28.6, 27.2, 27.0, 25.8, 19.9, 19.3, 18.7, 10.5; νmax: 3341, 2931, 2789, 1734, 1426 cm⁻¹; [α]D² = +13.14 (CHCl₃, 1.512 μmol) [Found M+Na⁺: 363.19; C₂₁H₄₀NaO₃ requires: 363.29].
Experiment 20: 9-((1S,2R)-2-((S)-4-Oxobutan-2-yl)cyclopropyl)nonyl pivalate (142)

9-((1S,2R)-2-((S)-4-Hydroxybutan-2-yl)cyclopropyl)nonyl pivalate (151) (0.42 g, 1.23 mmol) was added to a stirred suspension of PCC (0.67 g, 3.09 mmol, 2.5 mol. equiv.) in dichloromethane (10 ml). The reaction mixture was stirred for 2 hrs at RT, when TLC analysis confirmed completion of the reaction, and diluted with ether (50 ml). The mixture was filtered through a bed of silica gel and washed with ether (2 x 10 ml), the solvent evaporated and the product was purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, 9-((1S,2R)-2-((S)-4-oxobutan-2-yl)cyclopropyl)nonyl pivalate (142) (0.39 g, 93 %), which showed δH (500 MHz, CDCl3): 9.78 (1H, s), 2.50 (1H, ddd, J 15.75, 6.3, 1.9 Hz), 2.35 (1H, ddd, J 15.75, 7.9, 2.5 Hz), 1.61 (2H, pent, J 6.6 Hz), 1.32-1.13 (26H, m), 1.00 (3H, d, J 6.65 Hz), 0.49 (1H, m), 0.34-0.21 (3H, m); δC (125 MHz, CDCl3): 202.9, 178.6, 64.4, 51.4, 38.7, 34.1, 33.9, 29.6, 29.51, 29.48, 29.2, 28.6, 27.2, 25.9, 25.6, 20.0, 18.8, 11.4; νmax: 2924, 2878, 1727 cm⁻¹; [α]D²⁰ = +20.47 (CHCl₃, 1.076 µmol) [Found M+Na⁺: 361.24; C₂₁H₃₈NaO₃ requires: 361.27].
Experiment 21: 9-((1S,2R)-2-((2S,19S,20S)-19-Methoxy-20-methyloctatriacontan-2-yl)cyclopropyl)nonyl pivalate (152)

Lithium bis(trimethylsilyl)amide (0.923 ml, 0.978 mmol, 1.06M) was added dropwise to a stirred solution of 5-((1S,6S,16S)-15-methoxy-16-methyltetracontyl-1-sulfonyl)-1-phenyl-1H-tetrazole (141) (670 mg, 0.903 mmol) and 9-((1S,2R)-2-((S)-4-oxobutan-2-yl)cyclopropyl)nonyl pivalate (142) (255 mg, 0.752 mmol) in dry THF (10 ml) under nitrogen at -20 °C. The reaction mixture rose to -10 °C during the addition of the base, and a yellow solution resulted. The mixture was allowed to reach RT and was stirred for 1 hr, when TLC showed no starting material was left. The reaction mixture was cooled to 0 °C and quenched with sat. aq. ammonium chloride (10 ml). The product was extracted with petrol/ether (1:1, 3 x 10 ml). The combined organic layers were washed with brine (20 ml), dried and evaporated to give an oil, which was purified via column chromatography eluting with petrol/ether (20:1) to give 9-((1S,2R)-2-[(E/Z)-(2S,19S,20S)-19-methoxy-20-methyloctatriacont-4-en-2-yl)cyclopropyl]nonyl pivalate (410 mg, 54%). Dipotassium azodicarboxylate (2.49 g, 12.83 mmol, 30 mol. equiv.) was added to a stirred solution of the alkenes (410 mg, 0.487 mmol) in THF (20 ml) and methanol (10 ml) at 10 °C under nitrogen, giving a yellow precipitate. A solution of glacial acetic acid (1 ml) and THF (2 ml) was added dropwise over 48 hrs, after which a white precipitate had formed. The mixture was cooled to 0 °C and poured slowly into sat. aq. sodium hydrogen carbonate (5 ml) and then extracted with petrol/ether (1:1, 3 x 25 ml). The combined organic layers were washed with water (10 ml), dried and evaporated to give a thick oil which slowly solidified. The residue was purified via column chromatography eluting in petrol/ether (10:1) to give a colourless oil, 9-((1S,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctatriacontan-2-yl)cyclopropyl)nonyl pivalate (152) (400 mg, 97%), which showed δH (500 MHz, CDCl3): 4.05 (2H, t, J 6.65 Hz), 3.70 (1H, m), 3.35 (3H, s), 1.60 (9H, s), 1.44-1.19 (84H, br. m including br. s at 1.26),
0.92-0.84 (10H, m), 0.47-0.44 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m); δc (125 MHz, CDCl3): 85.5, 65.8, 63.1, 57.7, 38.1, 35.4, 34.5, 32.8, 32.4, 31.9, 30.5, 30.1, 30.0, 29.9, 29.7, 29.6, 29.5, 29.4, 27.6, 27.3, 26.2, 26.1, 25.8, 22.7, 19.7, 18.6, 15.3, 14.9, 14.1, 10.5; νmax: 2918, 2857, 1745 cm⁻¹; [α]D²¹ = -6.85 (CHCl₃, 0.865 µmol) [Found M+Na⁺: 867.52; C₅₇H₁₁₂NaO₃ requires: 867.85].

Lithium aluminium hydride (36.0 mg, 0.9479 mmol, 2 mol. equiv.) was added to stirred THF (5 ml, HPLC grade) at -20 °C under nitrogen. A solution of 9-((1S,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctatriacontan-2-yl)cyclopropyl)nonyl pivalate (152) (400 mg, 0.4737 mmol) in THF (5 ml, HPLC grade) was added slowly and then the reaction was allowed to reach RT, then refluxed for 1 hr. When TLC showed no starting material was left, the reaction mixture was cooled to -20 °C and quenched with sat. aq. sodium sulfate until a white precipitate formed. The resultant mixture was stirred for 30 mins and then filtered through a bed of silica gel and the solvent evaporated. The product was purified via column chromatography eluting with petrol/ether (1:1) to give a colourless oil, 9-((1S,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctatriacontan-2-yl)cyclopropyl)nonyl pivalate (153) (260 mg, 72 %), which showed δH (500 MHz, CDCl3): 4.03 (2H, t, J 6.65 Hz), 3.69 (1H, m), 3.35 (3H, s), 1.52-1.20 (84H, br.m including br.s at 1.26), 0.90-0.82 (10H, m), 0.46-0.44 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m); δC (125 MHz, CDCl3): 85.5, 63.1, 57.7, 38.1, 37.4, 35.4, 34.5, 32.8, 32.4, 31.9, 30.5, 30.0, 29.9, 29.7, 29.6, 29.5, 29.4, 29.3, 27.6, 27.3, 26.2, 25.8, 22.7, 19.7; νmax: 3343, 2975, 2847 cm⁻¹; [α]19D = -6.11 (CHCl₃, 1.075 µmol) [Found M+Na⁺: 783.64; C₅₂H₁₀₄NaO₂ requires: 783.79].
Experiment 23: 9-((1R,2R)-2-((2S,19S,20S)-19-Methoxy-20-methyloctacontan-2-yl)cyclopropyl)nonanal (139)

9-((1S,2R)-2-((2S,19S,20S)-19-Methoxy-20-methyloctacontan-2-yl)cyclopropyl)nonan-1-ol (153) (0.26 g, 0.343 mmol) was added to a stirred suspension of PCC (0.22 g, 1.03 mmol, 3 mol. equiv.) in dichloromethane (10 ml). The reaction mixture was stirred for 1 hr at RT, when TLC analysis confirmed completion of the reaction, then diluted with ether (10 ml). The mixture was filtered through a bed of silica gel and washed with ether (2 x 5 ml), the solvent evaporated and the product was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 9-((1R,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctacontan-2-yl)cyclopropyl)-nonanal (139) (0.24 g, 96 %), which showed δH (500 MHz, CDCl3): 9.77 (1H, br. t, J 1.85 Hz), 3.38 (3H, s), 2.97-2.95 (1H, m), 2.43 (2H, dt, J 1.85, 7.55 Hz), 1.99-1.97 (1H, m), 1.65-1.61 (1H, m), 1.56 (2H, m), 1.40-1.09 (78H, br. m including br. s at 1.27), 0.89 (6H, dt, J 2.85, 6.6 Hz), 0.85 (3H, d, J 6.6 Hz), 0.48-0.43 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m); δC (125 MHz, CDCl3): 205.1, 85.5, 65.6, 57.7, 43.9, 38.1, 37.4, 35.4, 34.4, 32.8, 32.4, 31.9, 30.5, 30.0, 29.9, 29.7, 29.6, 29.5, 29.4, 29.3, 27.6, 27.3, 26.2, 25.8, 22.7, 19.7, 18.6, 16.5, 14.3, 10.5; vmax: 2984, 2875, 1724 cm⁻¹; [α]D¹⁹ = -3.45 (CHCl₃, 1.247 µmol) [Found M+Na⁺: 781.72; C₅₂H₁₀₂NaO₂ requires: 781.78].
Experiment 24: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)decyl)hexacosanoate (156)

Lithium bis(trimethylsilyl)amide (4.14 ml, 4.39 mmol, 1.06 M) was added dropwise to a stirred solution of (R)-2-[(R)-1-(tert-butyldimethylsilanyloxy)-3-oxo-propyl]-hexacosanoic acid methyl ester (128) (1.30 g, 2.25 mmol) and 7-(1-phenyl-1H-tetrazol-5-ylsulfonyl)heptyl pivalate (154) (1.20 g, 2.93 mmol, 1.2 mol. equiv.) in dry THF (50 ml) at -15 °C. The mixture was then stirred for 18 hrs at RT; when TLC analysis indicated completion of the reaction, sat. aq. ammonium chloride (20 ml) and petrol/ether (1:1, 50 ml) were added. The aqueous layer was re-extracted with petrol/ether (1:1, 3 x 50 ml) and the combined organic extracts washed with brine (50 ml), dried and evaporated to give a yellow oil. The crude product was purified by column chromatography eluting with petrol/ether (20:1) to give a colourless oil, methyl 2-((R-(E,Z)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)dec-3-nyl)hexacosanoate (155) (1.23 g, 72 %). Palladium on charcoal (10 %, 0.5 g) was added to a stirred solution of methyl 2-((R-(E,Z)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)dec-3-enyl)hexacosanoate (155) (1.23 g, 1.54 mmol) in ethanol (20 ml) and THF (20 ml). The mixture was stirred while being hydrogenated at atmospheric pressure, and when hydrogen absorption was complete was filtered through a pad of celite and washed with ethyl acetate (100 ml). The filtrate was evaporated to give a colourless oil, methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)decyl)hexacosanoate (156) (1.12, 93 %), which showed δH (500 MHz, CDCl3): 4.06 (2H, t, J 6.65 Hz), 3.92-3.89 (1H, m), 3.66 (3H, s), 2.53 (1H, ddd, J 3.75, 6.9, 10.7), 1.62 (2H, pent, J 6.6 Hz), 1.40-1.23 (60H, br. m including br. s at 1.26), 1.20 (9H, s), 0.89 (3H, t, J 6.95 Hz), 0.87 (9H, s) 0.05 (3H, s), 0.03 (3H, s); δC (125 MHz, CDCl3): 178.6, 175.1, 73.2, 64.4, 51.6, 51.2, 38.7, 33.7, 31.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 28.6, 27.9, 27.5, 27.2, 25.9, 25.8, 23.8, 22.7, 18.0, 14.1, -4.4, -4.9; vmax: 2937, 2866, 1733, 1470 cm⁻¹; [α]D²⁰ = -3.64 (CHCl₃, 1.047 μmol) [Found M+Na⁺: 803.45; C₄₈H₉₆NaO₅Si requires: 803.69].
Experiment 25: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-hydroxy decyl)hexacosanoate (157)

Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(pivaloyloxy)decyl) hexacosanoate (156) (1.10 g, 1.14 mmol) in THF (10 ml) was added to a stirred solution of potassium hydroxide (1.19 g, 21.18 mmol, 15 mol. equiv.) in THF (20 ml), methanol (20 ml) and water (2 ml). The mixture was heated to 70 °C and reflux was maintained for 2 hrs. When TLC analysis indicated completion of the reaction, the mixture was quenched with water (10 ml) and the aqueous layer extracted with ethyl acetate (3 x 50 ml). The combined organic extracts were dried and evaporated and the crude product purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-hydroxydecyl)hexacosanoate (157) (0.66 g, 67 %), which showed δ_H (500 MHz, CDCl$_3$): 3.92-3.89 (1H, m), 3.66 (3H, s), 3.64 (2H, t, J 6.6 Hz), 2.53 (1H, ddd, J 3.8, 6.95, 10.7 Hz), 1.57 (2H, pent, J 6.3 Hz), 1.36-1.23 (60H, br. m including br. s at 1.26), 0.90 (3H, t J 6.9 Hz), 0.87 (9H, s), 0.05 (3H, s), 0.02 (3H, s); δ_C (125 MHz, CDCl$_3$): 175.1, 73.2, 65.8, 63.0, 51.6, 51.2, 33.7, 32.8, 31.9, 29.8, 29.7, 29.64, 29.59, 29.5, 29.43, 29.40, 29.3, 27.9, 27.4, 27.1, 25.8, 23.8, 22.7, 18.0, 15.2, 14.1, -4.4, -4.9; ν_{\max}: 3334, 2950, 2847, 1757, 1457 cm$^{-1}$; $[\alpha]^{20}_D$ = -5.31 (CHCl$_3$, 1.257 mmol) [Found M+Na$: 719.40; C_{43}H_{88}NaO_4Si requires: 719.63].
Experiment 26: Methyl 2-((1R,2R)-10-bromo-1-(tert-butyldimethylsilyloxy) decyl)hexacosanoate (158)

Triphenyl phosphine (0.29 g, 1.12 mmol, 1.2 mol. equiv.) was added to a stirred solution of methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-hydroxydecyl)hexacosanoate (157) (0.65 g, 0.935 mmol) in dry dichloromethane (20 ml) and then sodium hydrogen carbonate (0.10 g) was added. The mixture was cooled to 0 °C and N-bromosuccinimide (0.22 g, 1.22 mmol, 1.3 mol. equiv.) was added portion wise over 10 mins at 0-4 °C. The reaction was stirred for 1 hr at 0-3 °C, when TLC analysis showed completion of the reaction, sat. aq. sodium bisulfate (10 ml). The aqueous layer was re-extracted with dichloromethane (2 x 20 ml) and the combined organic layers were washed with water (20 ml), dried and the solvent evaporated. The resultant crude product was taken up in petrol/ether (1:1, 40 ml) and the mixture stirred for 30 mins, then the triphenylphosphonium oxide was filtered was washed with petrol/ether (1:1, 20 ml). The solvent was evaporated and the crude product purified via column chromatography eluting with petrol/ether (20:1) to give a colourless oil, methyl 2-((1R,2R)-10-bromo-1-(tert-butyldimethylsilyloxy)decyl)hexacosanoate (158) (0.54 g, 76 %), which showed δH (500 MHz, CDCl3): 3.93-3.90 (1H, m), 3.66 (3H, s), 3.41 (2H, t, J 6.95 Hz), 2.53 (1H, ddd, J 3.75, 7.25, 11 Hz), 1.58 (2H, pent, J 6.95 Hz), 1.58-1.23 (60H, br. m including br. s at 1.26), 0.89 (3H, t J 6.95 Hz), 0.87 (9H, s), 0.05 (3H, s), 0.03 (3H, s); δC (125 MHz, CDCl3): 175.1, 73.2, 65.8, 51.6, 51.2, 33.9, 33.7, 32.8, 31.9, 31.6, 29.8, 29.7, 29.64, 29.60, 29.42, 29.38, 29.1, 28.7, 28.2, 27.9, 27.7, 27.1, 25.8, 23.8, 22.7, 18.0, 15.2, 14.1, - 4.4, -4.9; vmax: 2934, 2857, 1742, 1467 cm⁻¹; [α]D = -5.68 (CHCl₃, 0.987 µmol) [Found M+Na⁺: 781.28; C₄₃H₈₇NaO₅SiBr requires: 781.55].
Experiment 27: Methyl 2-(((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylthio)decyl)hexacosanoate (159)

Methyl 2-(((1R,2R)-10-bromo-1-(tert-butyldimethylsilyloxy)decyl)hexacosanoate (158) (0.54 g, 0.71 mmol) in THF (1.5 ml) and acetone (1.5 ml) was added to a stirred solution of 1-phenyl-1H-tetrazole-5-thiol (0.15 g, 0.857 mmol, 1.2 mol. equiv.) and anhydrous potassium carbonate (0.29 g, 2.14 mmol, 3 mol. equiv.) in acetone (10 ml, HPLC grade) at RT. The mixture was stirred at RT for 18 hrs; the solvent was evaporated and the residue was diluted with petrol/ether (1:1, 20 ml) and water (20 ml). The aqueous layer was re-extracted with petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated to give a crude oil which was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, methyl 2-(((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylthio)decyl)hexacosanoate (159) (0.45 g, 73 %), which showed δH (500 MHz, CDCl3): 7.57-7.53 (5H, m), 3.92-3.89 (1H, m), 3.66 (3H, s), 3.40 (2H, t, J 7.25 Hz), 2.53 (1H, ddd, J 3.8, 7.25, 11.05 Hz), 1.82 (2H, pent, J 7.55 Hz), 1.56-1.20 (60H, br. m including br. s at 1.26), 0.89 (3H, t J 6.6 Hz), 0.87 (9H, s), 0.04 (3H, s), 0.02 (3H, s); δC (125 MHz, CDCl3): 175.1, 154.5, 133.8, 130.0, 129.8, 123.9, 73.2, 65.8, 51.6, 51.2, 33.7, 33.4, 31.9, 29.8, 29.7, 29.64, 29.60, 29.43, 29.38, 29.1, 29.0, 28.7, 27.9, 27.7, 27.1, 25.8, 23.8, 22.7, 18.0, 15.2, 14.1, -4.4, -4.9; νmax: 2929, 2854, 1741 1465 cm⁻¹; [a]D²¹ = -5.14 (CHCl₃, 1.452 µmol) [Found M+Na⁺: 879.49; C₅₀H₉₂NaO₃SiN₄S requires: 879.66].
Experiment 28: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylsulfonyl)decyl)hexacosanoate (140)

\[
\begin{align*}
\text{Ph} & \quad \text{SO} & \quad \text{OSiMe}_2\text{Bu} \quad \text{O} \\
\text{(CH}_2\text{)}_9 & \quad \text{N} & \quad \text{N} \\
\text{(CH}_2\text{)}_{23}\text{CH}_3 & \quad \text{OMe}
\end{align*}
\]

\(m\)-Chloroperoxybenzoic acid (0.39 g, 1.58 mmol, 3 mol. equiv) in dichloromethane (2 ml) was added slowly to a stirred solution of methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylthio)decyl)hexacosanoate (159) (0.45 g, 0.53 mmol) and sodium hydrogen carbonate (0.20 g, 2.37 mmol, 4.5 mol. equiv.) in dichloromethane (5 ml) at 5 °C. The mixture was stirred for 18 hrs at RT; when TLC analysis indicated completion of the reaction, the solvent was evaporated. The resultant residue was diluted with ethyl acetate (5 ml) and slowly quenched with sat. aq. sodium metabisulfite (2 ml). The aqueous layer was re-extracted with ethyl acetate (2 x 10 ml) and the combined organic extracts were washed with sat. aq. sodium hydrogen carbonate (10 ml) and then water (20 ml). The organic extract was then dried and evaporated and the resultant yellow oil purified via column chromatography eluting with petrol/ether (1:1) to give a colourless oil, methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylsulf onyl)decyl)hexacosanoate (140) (0.35 g, 75 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)): 7.71-7.70 (2H, m), 7.64-7.60 (3H, m), 3.92-3.89 (1H, m), 3.74 (2H, t, J 8.2 Hz), 3.66 (3H, s), 2.53 (1H, ddd, J 3.8, 6.95, 11.05 Hz), 1.96 (2H, dist. pent, J 7.9 Hz), 1.51-1.20 (60H, br. m including br. s at 1.26), 0.89 (3H, t J 6.6 Hz), 0.87 (9H, s), 0.05 (3H, s), 0.02 (3H, s); \(\delta_C\) (125 MHz, CDCl\(_3\)): 175.1, 154.5, 133.8, 130.0, 129.8, 123.9, 73.2, 61.8, 51.6, 51.2, 33.7, 33.4, 31.9, 29.8, 29.7, 29.6, 29.4, 29.4, 29.1, 29.0, 28.7, 27.9, 27.7, 27.1, 25.8, 23.8, 22.7, 18.0, 15.2, 14.1, -4.4, -4.9; \(\nu_{\text{max}}\): 2919, 2848, 1721 1464 cm\(^{-1}\); \([\alpha]_D^{19}\) = -4.85 (CHCl\(_3\), 1.201 \mu\text{mol}); [Found M+Na\(^+\): 911.52; C\(_{50}\)H\(_{92}\)NaO\(_5\)SiN\(_4\)S requires: 911.65].
Experiment 29: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl)hexacosanoate (161)

Lithium bis(trimethylsilyl)amide (0.2920 ml, 0.309 mmol, 1.06M) was added dropwise to a stirred solution of methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-10-((1-phenyl-1H-tetrazol-5-ylsulfonyl)decyl)hexacosanoate (140) (183 mg, 0.206 mmol) and 9-((1R,2R)-2-((2S,19S,20S)-19-methoxy-20-methyloctatriacontan-2-yl)cyclopropyl) nonanal (139) (172 mg, 0.227 mmol) in dry THF (10 ml) under nitrogen at -20 °C. The temperature rose to -10 °C during the addition of the base, and a yellow solution resulted. The mixture was allowed to reach RT, stirred for 1 hr, when TLC showed no starting material was left; then cooled to 0 °C and quenched with sat. aq. ammonium chloride (10 ml). The product was extracted with petrol/ether (1:1, 3 x 10 ml). The combined organic layers were washed with brine (20 ml), dried and evaporated to give an oil, which was purified by column chromatography eluting with petrol/ether (20:1) to give methyl 2-((R)-(E/Z)-1-(tert-butyldimethylsilyloxy)-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadec-10-enyl)hexacosanoate (160) (80.6 mg, 28 %). Dipotassium azodicarboxylate (0.33 g, 1.708 mmol, 30 mol. equiv.) was added to a stirred solution of compound (160) (80.6 mg, 0.057 mmol) in THF (5 ml) and methanol (5 ml) at 10 °C under nitrogen, giving a yellow precipitate. A solution of glacial acetic acid (1 ml) and THF (2 ml) was added dropwise over 48 hrs, after which a white precipitate had formed. The mixture was cooled to 0 °C and poured slowly into sat. aq. sodium hydrogen carbonate (5 ml) and then extracted with petrol/ether (1:1, 3 x 10 ml). The combined organic layers were washed with water (10 ml), dried and evaporated to give a thick oil which slowly solidified. The residue was purified via column chromatography eluting in petrol/ether (10:1) to give a white solid, methyl 2-((R)-1-(tert-butyldimethylsilyloxy)-19-((1S,2R)-2-((2S,18S,
19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl) hexacosanoate (161) (75.7 mg, 94 %), which showed δ_H (500 MHz, CDCl$_3$): 3.92-3.90 (1H, m), 3.66 (3H, s), 3.35 (3H, s), 2.97-2.95 (1H, m), 2.54 (1H, ddd, J 3.75, 7.25, 11 Hz), 1.58-1.18 (150H, br.m including br.s at 1.27), 0.91-0.85 (21H, m), 0.48-0.44 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m), 0.05 (3H, s), 0.03 (3H, s); δ_C (125 MHz, CDCl$_3$): 175.1, 125.5, 85.5, 73.2, 65.9, 57.7, 51.6, 38.1, 37.4, 37.1, 35.8, 35.4, 34.5, 33.7, 32.8, 32.4, 31.9, 31.1, 30.5, 30.3, 30.1, 30.0, 29.9, 29.8, 29.7, 29.64, 29.60, 29.52, 29.49, 29.4, 27.8, 27.6, 27.5, 27.3, 26.2, 26.1, 25.8, 23.7, 22.7, 19.7, 18.6, 18.0, 14.9, 14.1, 10.5, -4.4, -4.9; ν_{max}: 2923, 2852, 1741, 1465 cm$^{-1}$; $\alpha^{0}_{D} = -1.45$ (CHCl$_3$, 0.856 μmol); m.p. 61-63 °C; [Found M+Na$^+$: 1446.21; C$_{95}$H$_{190}$NaO$_4$Si requires: 1446.43].
Experiment 30: Methyl 2-((R)-1-hydroxy-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl) hexacosanoate (162)

A dry polyethylene vial equipped with a rubber septum was charged with methyl 2-((R)-1-(tert-butyldimethylsilyloxy)-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl)hexacosanoate (161) (70 mg, 0.0494 mmol) in dry THF (4 ml) under nitrogen at 0 °C. Pyridine (0.2 ml) and hydrogen fluoride-pyridine complex (0.2 ml, 0.140 mmol, 208 mol. equiv.) were added and the mixture stirred for 32 hrs at 43 °C. When TLC analysis indicated completion of the reaction, the mixture was neutralised by slowly pouring the mixture into sat. aq. sodium hydrogen carbonate (10 ml) until no more carbon dioxide was liberated. The product was extracted with petrol/ether (1:1, 3 x 50 ml), dried and evaporated to give a white solid. This was purified via column chromatography eluting with petrol/ether (4:1) to give a white solid, methyl 2-((R)-1-hydroxy-19-((1S,2R)-2-((2S,18S,19S)-18-methoxy-19-methylheptatriacontan-2-yl)cyclopropyl)nonadecyl)hexacosanoate (162) (35 mg, 54 %), which showed δ_H (500 MHz, CDCl₃): 3.72 (3H, s), 3.69-3.64 (1H, m), 3.35 (3H, s), 2.97-2.95 (1H, m), 2.44 (1H, dt, J 5.35, 9.15 Hz), 1.63-1.13 (150H, br. m including br. s at 1.26), 0.91-0.85 (12H, m), 0.47-0.43 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m); δ_C (125 MHz, CDCl₃): 176.2, 85.5, 72.3, 57.7, 51.5, 50.9, 38.1, 37.4, 35.7, 35.3, 32.4, 31.9, 31.6, 30.5, 30.3, 30.1, 29.9, 29.7, 29.64, 29.62, 29.60, 29.58, 29.53, 29.49, 29.42, 29.38, 27.6, 27.4, 27.3, 26.2, 26.1, 25.7, 22.7, 19.7, 18.6, 15.3, 14.9, 14.1, 10.5; ν_max: 3509, 2916, 2848, 2360, 2341, 1727, 1714, 1468 cm⁻¹; [α]_D^23 = -1.12 (CHCl₃, 0.993 μmol); m.p. = 63 - 65 °C [Found M+Na⁺: 1332.19; C₈₉H₁₇₆NaO₄ requires: 1332.35].
Experiment 31: \((R)-2-((R)-1\text{-hydroxy}-19-((1S,2R)-2-((2S,18S,19S)-18\text{-methoxy}-19\text{-methylheptatriacontan}-2\text{-yl})\text{cyclopropyl})\text{nonadecyl})\text{hexacosanoic acid (84)}\)

\[
\begin{align*}
\text{CH}_3\text{(CH}_2\text{)}_{17}-\text{OMe} & \quad \text{OH} \\
& \quad -(\text{CH}_2\text{)}_{15} \quad \text{(CH}_2\text{)}_{17} \\
& \quad \text{OH} \\
& \quad -(\text{CH}_2\text{)}_{23}\text{CH}_3
\end{align*}
\]

Lithium hydroxide monohydrate (20 mg, 0.835 mmol, 30 mol. equiv.) was added to a stirred solution of methyl \(2-((R)-1\text{-hydroxy}-19-((1S,2R)-2-((2S,18S,19S)-18\text{-methoxy}-19\text{-methylheptatriacontan}-2\text{-yl})\text{cyclopropyl})\text{nonadecyl})\text{hexacosanoate (162)}\) (35 mg, 0.0269 mmol) in THF (2.5 ml), methanol (0.3 ml) and water (0.3 ml) at RT. The mixture was stirred at 43 °C for 18 hrs; when TLC analysis indicated completion of the reaction, the reaction was then cooled to RT and acidified with hydrochloric acid (5 %, 1 ml) and the aqueous layer extracted with warm petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and then purified by column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, \((R)-2-((R)-1\text{-hydroxy}-19-((1S,2R)-2-((2S,18S,19S)-18\text{-methoxy}-19\text{-methylheptatriacontan}-2\text{-yl})\text{cyclopropyl})\text{nonadecyl})\text{hexacosanoic acid (84)}\) (24.0 mg, 69 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)): 3.74-3.70 (1H, m), 3.36 (3H, s), 2.99- 2.96 (1H, m), 2.49-2.45 (1H, m), 1.79-1.72 (1H, m), 1.69-1.61 (2H, br.m), 1.55-1.10 (149H, br.m including br.s at 1.27), 0.91-0.85 (12H, br.m including t, J 6.95 Hz), 0.48-0.43 (1H, m), 0.22-0.18 (1H, m), 0.17-0.14 (1H, m), 0.13-0.09 (1H, m); \(\delta_C\) (125 MHz, CDCl\(_3\)): 178.7, 85.6, 72.1, 65.9, 57.7, 50.6, 38.2, 37.4, 35.6, 35.3, 34.5, 32.4, 31.9, 30.5, 30.1, 30.0, 29.9, 29.72, 29.69, 29.64, 29.59, 29.5, 29.43, 29.39, 27.6, 27.3, 27.2, 26.2, 25.8, 22.7, 19.7, 18.6, 15.3, 14.9, 14.1, 10.5; \(\nu_{max}\): 3520, 2924, 2853, 1735, 1465 cm\(^{-1}\); \([\alpha]\)_2^D = -0.97 (CHCl\(_3\), 0.468 µmol); m.p. 70-72 °C; [Found M+Na\(^+\): 1318.24; C\(_{88}H\(_{174}\)NaO\(_4\) requires: 1318.33].
4.3 – Synthesis of protected α-methyl trans-alkene keto-mycolic acid (85)

Experiment 32: tert-Butyldimethyl((8S, 9S)-9-methyl-1-(tetrahydro-2H-pyran-2-yloxy)heptacosan-8-yloxy)silane (169)

Imidazole (5.0 g, 73.5 mmol, 2.5 mol. equiv.) was added to a stirred solution of (8S,9S)-9-methyl-1-(tetrahydro-2H-pyran-2-yloxy)heptacosan-8-ol (167) (15.0 g, 29.4 mmol) in dry DMF (100 ml) at RT followed by addition of tert-butyl dimethylsilyl chloride (5.76 g, 38.2 mmol, 1.3 mol. equiv.). The mixture was heated to 50 °C for 18 hrs. When TLC showed no starting material was left, the mixture was quenched with water (200 ml) and extracted with dichloromethane (3 x 200 ml). The combined organic extracts were washed with water (100 ml), dried and the solvent evaporated; the crude product was purified via column chromatography eluting with petrol/ether (5:1) to give a colourless oil, tert-butyldimethyl((8S,9S)-9-methyl-1-(tetrahydro-2H-pyran-2-yloxy)heptacosan-8-yloxy)silane (169) (16.71 g, 91 %), which showed δH (500 MHz, CDCl3): 4.58 (1H, t, J 2.8 Hz), 3.90-3.86 (1H, m), 3.74 (1H, dt, J 6.95, 9.8 Hz), 3.53-3.48 (2H, m), 3.40 (1H, dt, J 6.95, 9.8 Hz), 1.86-1.82 (1H, m), 1.75-1.70 (1H, m), 1.62-1.17 (50H, br.m including br.s at 1.27), 0.89 (9H, s), 0.88 (3H, t, J 7.0 Hz), 0.80 (3H, d, J 6.95 Hz), 0.03 (3H, s), 0.02 (3H, s); δC (125 MHz, CDCl3): 98.8, 75.9, 67.7, 62.3, 37.8, 33.5, 32.5, 31.9, 30.8, 30.0, 29.80, 29.76, 29.7, 29.6, 29.5, 29.4, 29.1, 27.73, 27.68, 26.2, 26.0, 25.9, 25.5, 22.7, 19.7, 18.2, 14.4, 14.3, 14.1, -4.2, -4.4; vmax: 2923, 2854, 1464 cm⁻¹; [α]D² = -6.41 (CHCl₃, 1.088 µmol) [Found M+Na⁺: 647.39; C₃⁹H₈₀NaO₃Si requires: 647.58].
Experiment 33: (8S,9S)-8-(tert-Butyldimethylsilyloxy)-9-methylheptacosan-1-ol (170)

A solution pyridinium-p-toluene sulfonate (3.36 g, 13.4 mmol) in methanol (150 ml) was added to a stirred solution of tert-butyldimethyl((8S,9S)-9-methyl-1-(tetrahydro-2H-pyran-2-yloxy)heptacosan-8-yloxy)silane (169) (16.71 g, 26.8 mmol) in THF (150 ml) and refluxed for 2.5 hrs, when TLC showed no starting material was left. Sat. aq. sodium hydrogen carbonate (50 ml) and water (100 ml) were added and the product extracted with ether (3 x 100 ml). The combined organic layers were dried and the solvent evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ether (5:1) then petrol/ether (1:1) to give a colourless oil, tert-butyldimethyl((8S,9S)-9-methyl-1-(tetrahydro-2H-pyran-2-yloxy)heptacosan-8-yloxy)silane (170) (11 g, 80 %), which showed δH (500 MHz, CDCl3): 3.65 (2H, t, J 6.5 Hz), 3.50 (1H, dt, J 3.5, 6.0 Hz), 1.58 (2H, pent, J 7.3 Hz), 1.50-1.13 (45H, br. m including br. s at 1.27), 1.09-1.02 (1H, m), 0.89 (9H, s), 0.88 (3H, t, J 6.95 Hz), 0.80 (3H, d, J 6.6 Hz), 0.03 (3H, s), 0.02 (3H, s); δc (125 MHz, CDCl3): 75.9, 63.1, 37.8, 33.5, 32.8, 32.4, 31.9, 30.0, 29.9, 29.73, 29.68, 29.5, 29.4, 27.7, 26.0, 25.9, 25.7, 22.7, 18.2, 14.5, 14.1, -4.2, -4.4; νmax: 3321, 2942, 2845, 1464 cm⁻¹; [α]D²² = -12.7 (CHCl₃, 1.245 µmol) [Found M+Na⁺: 563.47; C₃₄H₇₂NaO₂Si requires: 563.52].
Experiment 34: (8S,9S)-8-(tert-butyldimethylsilyloxy)-9-methylheptacosan-1-ol (170) (0.60 g, 1.11 mmol) was added to a stirred suspension of PCC (0.60 g, 2.78 mmol, 2.5 mol. equiv.) in dichloromethane (25 ml). The reaction was stirred for 2 hrs at RT, when TLC showed no starting material was left, then diluted with ether (100 ml), filtered through a bed of silica gel and the solvent evaporated. The crude product was purified via column chromatography eluting with petrol/ether (5:2) to give a yellow oil, (8S,9S)-8-(tert-butyldimethylsilyloxy)-9-methylheptacosan-1-ol (170) (0.56 g, 94%), which showed δ_H (500 MHz, CDCl_3): 9.77 (1H, t, J 1.5 Hz), 3.50-3.47 (1H, m), 2.44 (2H, dt, J 1.5, 7.2 Hz), 1.63 (2H, pent, J 7.3 Hz), 1.48-1.18 (45H, br. m including br. s at 1.27), 1.09-1.02 (1H, m), 0.89 (9H, s), 0.87 (3H, t, J 6.95 Hz), 0.80 (3H, d, J 6.6 Hz), 0.03 (3H, s), 0.02 (3H, s); δ_C (125 MHz, CDCl_3): 202.9, 75.9, 37.8, 33.5, 33.8, 32.4, 31.9, 30.0, 29.9, 29.73, 29.68, 29.5, 29.4, 27.7, 26.0, 25.9, 25.7, 22.7, 20.9, 18.2, 14.5, 14.1, -4.2, -4.4; ν_max: 2924, 2855, 1730, 1464 cm\(^{-1}\); [α]\text{D}^2 = +7.7 (CHCl_3, 1.047 µmol) [Found M+Na\(^{+}\): 561.44; C_{34}H_{70}NaO_2Si requires: 561.50].
Experiment 35: (17S,18S)-17-(tert-Butyldimethylsilyloxy)-18-methylhexatriacontyl pivalate

A solution of (8S,9S)-8-(tert-butyldimethylsilyloxy)-9-methylheptacosanal (171) (1.43 g, 3.26 mmol) and 9-(1-phenyl-1H-tetrazol-5-ylsulfonyl)nonyl pivalate (172) (1.711 g, 3.91 mmol, 1.2 mol. equiv.) in dry THF (50 ml) was stirred under nitrogen at -15 °C. Lithium bis(trimethylsilyl)amide (4.80 ml, 5.09 mmol, 1.06 M) was added dropwise between -12 °C and -5 °C, the solution was stirred for 18 hrs. When TLC showed no starting material was left, sat. aq. ammonium chloride (50 ml) and petrol/ether (100 ml, 1:1) were added. The aqueous layer was re-extracted with further petrol/ether (2 x 50 ml, 1:1) and the combined organic layers were dried and evaporated to give a crude product. This was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, (17S,18S)-(E/Z)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacont-9-enyl pivalate (232) (1.85 g, 76 %). Palladium on charcoal (0.25 g, 10%) was added to a stirred solution of the above product (1.83 g, 2.44 mmol) in THF (5 ml) and IMS (50 ml). The mixture was stirred while being hydrogenated at atmospheric pressure. When no more hydrogen was being absorbed the catalyst was removed via suction filtration on a pad of celite and was washed with THF (100 ml). The filtrate was evaporated to give a colourless oil, (17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontyl pivalate (233) (1.28 g, 70 %), which showed δH (500 MHz, CDCl3): 4.04 (2H, t, J 6.6 Hz), 3.51-3.49 (1H, m), 1.66-1.60 (2H, m), 1.51-1.25 (62H, br. m including br. s at 1.27), 1.21 (9H, s), 1.07-1.03 (1H, m), 0.89 (9H, s), 0.87 (3H, t, J 7.2 Hz), 0.80 (3H, d, J 7.0 Hz), 0.05 (3H, s), 0.03 (3H, s); δC (125 MHz, CDCl3): 178.6, 75.8, 64.5, 38.7, 37.7, 33.5, 32.5, 31.9, 30.0, 29.9, 29.73, 29.68, 29.6, 29.5, 29.4, 29.3, 28.6, 27.6, 27.2, 26.0, 25.9, 22.7, 18.2, 14.4, 14.1, -4.2, -4.4; v max: 2925, 2855, 1745, 1464 cm⁻¹; [α]D²⁴ = -5.98 (CHCl₃, 1.078 µmol) [Found M+Na⁺: 773.66; C₄₈H₉₈NaO₃Si requires: 773.72].
Experiment 36: (17S,18S)-17-(tert-Butyldimethylsilyloxy)-18-methylhexatriacontan-1-ol

Lithium aluminium hydride (0.10 g, 2.56 mmol) was added to stirring THF (20 ml) at -20 °C under nitrogen. A solution of (17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontyl pivalate (1.28 g, 1.71 mmol) in THF (10 ml) was added slowly and allowed to reach RT, then refluxed for 1 hr. When TLC showed no starting material was left the reaction was cooled to -20 °C and quenched with sat. aq. sodium sulfate until a white precipitate formed. THF (50 ml) was added and the mixture was stirred for 30 mins and then filtered on a bed of silica gel and the solvent evaporated. The residue was taken up in dichloromethane (50 ml) and washed with water (10 ml) and then dried. The solvent was evaporated and the crude product was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a colourless oil, (17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontan-1-ol (1.02 g, 90 %), which showed δH (500 MHz, CDCl₃): 3.65 (2H, t, J 6.5 Hz), 3.52-3.49 (1H, m), 1.60 (2H, pent, J 7.25 Hz), 1.51-1.22 (62H, br. m including br. s at 1.27), 1.09-1.01 (1H, m), 0.89 (9H, s), 0.87 (3H, t, J 6.95 Hz), 0.80 (3H, d, J 6.6 Hz), 0.04 (3H, s), 0.02 (3H, s); δC (125 MHz, CDCl₃): 75.9, 63.1, 37.8, 33.6, 32.9, 32.6, 31.9, 30.0, 29.9, 29.73, 29.68, 29.64, 29.61, 29.57, 29.5, 29.4, 27.7, 26.0, 25.9, 25.8, 22.7, 18.2, 14.4, 14.1, -4.2, -4.4; νmax: 3335, 2924, 2860, 1464 cm⁻¹; [α]D²⁰ = -5.47 (CHCl₃, 1.145 μmol) [Found M+Na⁺: 689.57; C₄₁H₉₀NaO₂Si requires: 689.66].
Experiment 37: (17S,18S)-1-Bromo-18-methylhexatriacontan-17-yloxy)(tert-butyl)dimethylsilane

N-Bromosuccinimide (0.32 g, 1.82 mmol, 1.3 mol. equiv.) was added in portions over 15 mins to a stirred solution of (17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontan-1-ol (1.02 g, 1.53 mmol) and triphenyl phosphine (0.46 g, 1.76 mmol, 1.15 equiv) in dichloromethane (30 ml) at 0 °C. The mixture was stirred at RT for 1 hr. When TLC analysis indicated completion of the reaction, it was quenched with sat. aq. sodium meta-bisulfite (25 ml). The aqueous layer was re-extracted with dichloromethane (2 x 20 ml) and the combined organic extracts washed with water (20 ml), dried and evaporated to give a residue. This residue was treated with petrol/ether (1:1, 50 ml), refluxed for 30 mins and then filtered and washed with petrol/ether (1:1, 25 ml). The filtrate was evaporated and the resultant residue purified via column chromatography eluting with petrol/ether (4:1) then (2:1) to give a yellow oil, (17S,18S)-1-bromo-18-methylhexatriacontan-17-yloxy)(tert-butyl)dimethylsilane (0.90 g, 81 %), which showed δ H (500 MHz, CDCl3): 3.53-3.57 (1H, m), 3.42 (2H, t, J 6.7 Hz), 1.87 (2H, pent, J 7.0 Hz), 1.56-1.12 (62H, br. m including br. s at 1.27), 1.10-1.02 (1H, m), 0.91 (9H, s), 0.88 (3H, t, J 7.2 Hz), 0.81 (3H, d, J 7.0 Hz), 0.04 (3H, s), 0.03 (3H, s); δ C (125 MHz, CDCl3): 75.9, 37.7, 34.0, 33.5, 32.5, 31.9, 30.0, 29.9, 29.7, 29.6, 29.5, 29.4, 28.8, 28.2, 27.7, 26.0, 25.9, 22.7, 18.2, 14.4, 14.1, -4.2, -4.4; νmax: 2922, 2855, 1464 cm⁻¹; [α]D = +4.44 (CHCl3, 1.357 μmol) [Found M+Na⁺: 751.49; C₄₃H₈₉BrNaOSi requires: 751.58].
Experiment 38: 5-((17S,18S)-17-(tert-Butyldimethylsilyloxy)-18-methylhexatriacontylthio)-1-phenyl-1H-tetrazole

((17S,18S)-1-Bromo-18-methylhexatriacontan-17-yloxy)(tert-butyl)dimethylsilane (0.82 g, 1.13 mmol) was added to a stirred solution of 1-phenyl-1H-tetrazole-5-thiol (0.22 g, 1.24 mmol, 1.1 mol. equiv.) and anhydrous potassium carbonate (0.46 g, 3.29 mmol, 3 mol. equiv.) in acetone (20 ml) at RT. The mixture was stirred at RT for 18 hrs, then the solvent was evaporated and the residue was diluted with petrol/ether (1:1, 50 ml) and water (25 ml). The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 25 ml). The combined organic extracts were dried and evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 5-((17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontylthio)-1-phenyl-1H-tetrazole (0.92 g, 99 %), which showed \(\delta_H \) (500 MHz, CDCl\(_3\)): 7.66-7.58 (5H, m), 3.55-3.45 (1H, m), 3.40 (2H, t, J 7.4 Hz), 1.83 (2H, pent, J 7.4 Hz), 1.60-1.10 (62H, br. m including br. s at 1.27), 1.10-1.02 (1H, m), 0.91 (9H, s), 0.88 (3H, t, J 7.2 Hz), 0.81 (3H, d, J 7.0 Hz), 0.04 (3H, s), 0.03 (3H, s); \(\delta_C \) (125 MHz, CDCl\(_3\)): 154.5, 130.0, 129.7, 123.8, 75.9, 37.7, 33.4, 32.5, 31.9, 29.9, 29.7, 29.4, 29.3, 29.1, 29.0, 28.6, 27.7, 25.9, 22.7, 14.9, 14.1, -4.2, -4.4; \(\nu_{max} \): 2926, 2854, 1598, 1499, 1464 cm\(^{-1}\); [\(\alpha \)]\(_{D}^2\) = -3.20 (CHCl\(_3\), 1.324 μmol) [Found M+Na\(^+\): 849.53; C\(_{50}\)H\(_{94}\)N\(_4\)NaOSSi requires: 849.68].
Experiment 39: 5-((17S, 18S)-17-(tert-Butyldimethylsilyloxy)-18-methylhexatriacontylsulfonyl)-1-phenyl-1H-tetrazole (164)

A solution of ammonium molybdate (VI) tetrahydrate (1.33 g, 1.08 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (5 ml, 35 % w/w) was added and to a stirred solution of 5-((17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontylthio)-1-phenyl-1H-tetrazole pivalate (0.89 g, 1.08 mmol) in THF (10 ml) and IMS (35 ml) at 12 °C and stirred at 15-20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (0.67 g, 0.54 mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (2 ml, 35 % w/w) was added and the reaction mixture stirred for 18 hrs. The mixture was then poured into water (100 ml) and extracted with dichloromethane (3 x 15 ml), washed with water (50 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 5-((17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontylsulfonyl)-1-phenyl-1H-tetrazole (164) (0.79 g, 85 %), which showed δH (500 MHz, CDCl3): 7.72-7.70 (2H, m), 7.65-7.58 (3H, m), 3.74 (2H, t, J 7.9 Hz), 1.97 (1H, dist. pent, J 7.9 Hz), 1.59-1.11 (62H, br. m including br. s at 1.27), 1.10-1.02 (1H, m), 0.92 (9H, s), 0.88 (3H, t, J 7.25 Hz), 0.81 (3H, d, J 7.0 Hz), 0.04 (3H, s), 0.03 (3H, s); δC (125 MHz, CDCl3): 153.5, 133.1, 131.4, 129.7, 125.1, 75.9, 56.0, 37.7, 33.5, 32.5, 31.9, 30.0, 29.9, 29.73, 29.68, 29.6, 29.5, 29.4, 29.2, 28.9, 28.1, 27.7, 26.0, 25.9, 22.7, 21.9, 18.2, 14.4, 14.1, -4.2, -4.4; νmax: 2929, 2854, 1599, 1499 cm⁻¹; [a]²¹_D = -4.85 (CHCl₃, 1.164 µmol) [Found M+Na⁺: 881.57; C₅₀H₉₄N₄NaO₃SSi requires: 881.67].
Experiment 40: 2-(10-Bromodecyloxy)tetrahydro-2H-pyran (181)

Br(CH₂)₁₀OTH₃

2,3-Dihydropyran (16.77 g, 199.4 mmol, 2.1 mol. equiv., d = 0.928, 18.07 ml) and pyridinium-p-toluene sulfonate (2.5 g) were added to a stirred solution of 10-bromodecan-1-ol (180) (22.50 g, 94.94 mmol) in dry dichloromethane (200 ml) under nitrogen at RT. The mixture was stirred for 3 hrs; when TLC indicated the reaction was complete, the mixture was quenched with sat. aq. sodium hydrogen carbonate (100 ml) and extracted with dichloromethane (2 x 100 ml). The combined organic layers were washed with water (100 ml), dried and evaporated to give a crude oil which was purified via flash distillation (120 °C) to give a colourless oil, 2-(10-bromodecyloxy)tetrahydro-2H-pyran (181) (25.54 g, 84 %), which showed δ_H (500 MHz, CDCl₃): 4.60-4.57 (1H, m), 3.89-3.85 (1H, m), 3.75 (1H, dt, J 6.5, 9.5 Hz), 3.55-3.50 (1H, m), 3.45 (2H, t, J 6.5 Hz), 3.40 (1H, dt, J 6.5, 9.5 Hz), 1.91-1.80 (3H, m), 1.76-1.72 (1H, m), 1.68-1.40 (18H, m); δ_C (125 MHz, CDCl₃): 98.8, 67.6, 62.3, 33.9, 30.8, 29.9, 29.7, 29.5, 29.4, 29.0, 28.7, 28.6, 26.2, 25.5, 19.7; ν_max: 2939, 2865, 1440 cm⁻¹ [Found M+: 321.2914; C₁₅H₂₉BrO₂ requires: 321.2990].
Experiment 41: 2-(10-Iododecyloxy)tetrahydro-2H-pyran (182)

\[\text{I} \text{(CH}_2\text{)}_{10} \text{OTHP} \]

2-(10-Bromodecyloxy)tetrahydro-2H-pyran (181) (25.54 g, 79.78 mmol) was added to a stirred suspension of sodium iodide (35.87 g, 239.33 mmol, 3 mol. equiv.) in acetone (400 ml) at RT. After the addition of sodium hydrogen carbonate (7.04 g, 83.77 mmol, 1.05 mol. equiv.), the reaction mixture was refluxed for 3 hrs and stirred at RT for 18 hrs. The solvent was then evaporated and the residue was dissolved in dichloromethane (500 ml) and washed with water (200 ml). The aqueous layer was extracted with dichloromethane (3 x 50 ml) and the combined organic layers were dried and the solvent evaporated. The resultant crude product was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give an oil which slowly turned brown over time, 2-(10-Iododecyloxy)tetrahydro-2H-pyran (182) (26.24 g, 89 %), which showed δ_{H} (500 MHz, CDCl$_3$): 4.60-4.57 (1H, m), 3.89-3.85 (1H, m), 3.75 (1H, dt, J 6.5, 9.5 Hz), 3.55-3.50 (1H, m), 3.40 (1H, dt, J 6.5, 9.5 Hz), 3.18 (2H, t, J 6.5 Hz), 1.91-1.80 (3H, m), 1.76-1.72 (1H, m), 1.68-1.40 (18H, m); δ_{C} (125 MHz, CDCl$_3$): 98.8, 67.6, 62.3, 30.8, 29.9, 29.7, 29.5, 29.4, 29.0, 28.7, 28.6, 26.2, 25.5, 19.7, 6.8; ν_{max}: 2939, 2865, 1440 cm$^{-1}$ [Found M+: 368.2912; C$_{15}$H$_{29}$I$_2$O$_2$ requires: 368.2999].
Experiment 42: 13-(Tetrahydro-2H-pyran-2-yloxy)tridec-2-yn-1-ol (184)

\[
\text{HOCH}_2 (\text{CH}_2)_{10} \text{OTHP}
\]

Liquid ammonia (200 ml) was decanted into a 3 neck 500 ml round-bottomed flask surrounded with cotton wool and fitted with a liquid nitrogen/IMS condenser, protected with a soda lime tube. Lithium wire (1.18 g, 170.7 mmol, 2.2 mol. equiv) was washed with petrol and added in 1 cm portions over 30 mins, with a deep blue colour being observed. Iron (III) nitrate (0.2 g) was then added and the solution stirred with a mechanical stirrer for 30 mins, prop-2-yn-1-ol (183) (4.35 g, 77.66 mmol) in dry ether (10 ml) was then added over 30 mins. The resultant mixture was then stirred for 1 hr, then 2-(10-iododecyloxy)tetrahydro-2H-pyran (182) (20 g, 54.31 mmol) in dry ether (10 ml) was added over 30 mins. The reaction was stirred for 3 hrs, maintaining the temperature of the condensers; the reaction was then left without stirring for 18 hrs to allow the ammonia to evaporate. The reaction mixture was then diluted with ethyl acetate (250 ml) and the mixture quenched with 10 % sulfuric acid (50 ml); the aqueous layer was re-extracted with ethyl acetate (3 x 50 ml). The combined organic extracts were dried and the solvent evaporated to give a crude dark brown oil, which was purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a yellow oil, 13-(tetrahydro-2H-pyran-2-yloxy)tridec-2-yn-1-ol (184) (8.54 g, 53 %), which showed δH (500 MHz, CDCl₃): 4.52 (1H, t, J 3.75), 4.20-4.17 (2H, m), 3.83-3.79 (1H, m), 3.67 (1H, dt, J 6.95, 9.45 Hz), 3.46-3.42 (1H, m), 3.32 (1H, dt, J 6.65, 9.45 Hz), 2.52 (1H, br.s), 2.15-2.13 (2H, m), 1.80-1.75 (1H, m), 1.68-1.63 (1H, m), 1.54-1.41 (8H, m), 1.30-1.18 (12H, br.m including br.s at 1.22); δC (125 MHz, CDCl₃): 98.7, 86.0, 78.5, 62.2, 51.0, 30.7, 30.3, 29.7, 29.42, 29.40, 29.0, 28.8, 28.6, 25.4, 20.9, 19.6; v_max: 3333, 2925, 2864, 2238, 1442 cm⁻¹ [Found M+: 296.4424; C₁₈H₃₂O₃ requires: 296.4518].
Experiment 43: 13-(Tetrahydro-2H-pyran-2-yloxy)tridecan-1-ol (185)

\[
\text{HO(CH_2)_13O} \text{THP}
\]

Palladium on charcoal (10 %, 1 g) was added to a stirred solution of 13-(tetrahydro-2H-pyran-2-yloxy)tridec-2-yn-1-ol (184) (8.54 g, 28.67 mmol) in IMS (150 ml). The mixture was stirred while being hydrogenated at atmospheric pressure; when hydrogen absorption was complete the mixture was filtered through a pad of celite and washed with THF (100 ml). The filtrate was evaporated to give a colourless oil, 13-(tetrahydro-2H-pyran-2-yloxy)tridecan-1-ol (185) (6.24 g, 72 %), which showed \(\delta_H \) (500 MHz, CDCl\(_3\)): 4.57 (1H, t, J 2.85 Hz), 3.88-3.84 (1H, m), 3.74-3.68 (2H, m), 3.62 (1H, dt, J 2.85, 6.6 Hz), 3.50-3.48 (1H, m), 3.37 (1H, dt, J 6.6, 8.5 Hz), 1.85-1.80 (1H, m), 1.72-1.68 (1H, m), 1.63-1.50 (8H, m), 1.39-1.22 (18H, br.m including br.s at 1.25), 0.87 (1H, t, J 6.65 Hz); \(\delta_C \) (125 MHz, CDCl\(_3\)): 98.8, 67.7, 62.3, 32.8, 30.7, 30.2, 29.6, 29.0, 26.1, 25.4, 20.9; \(\nu_{\text{max}} \): 3333, 2925, 2864, 1442 cm\(^{-1}\) [Found M+: 300.4827; C\(_{18}\)H\(_{36}\)O\(_3\) requires: 300.4837].
Experiment 44: 2-(13-Bromotridecyloxy)tetrahydro-2H-pyran (186)

N-Bromosuccinimide (4.81 g, 27.00 mmol, 1.3 mol. equiv.) was added in portions over 15 mins to a stirred solution of 13-(tetrahydro-2H-pyran-2-yloxy)tridecan-1-ol (185) (6.24 g, 20.77 mmol) and triphenyl phosphine (6.26 g, 23.88 mmol, 1.15 equiv) and sodium hydrogen carbonate (0.5 g) in dichloromethane (100 ml) at 0 °C. The mixture was stirred at RT for 1 hr; when TLC analysis indicated completion of the reaction it was quenched with sat. aq. sodium meta-bisulfite (100 ml). The aqueous layer was re-extracted with dichloromethane (2 x 100 ml) and the combined organic extracts washed with water (50 ml), dried and evaporated to give a residue. This residue was treated with petrol/ether (1:1, 200 ml), under reflux for 30 mins, filtered and washed with petrol/ether (1:1, 200 ml). The filtrate was evaporated and the resultant residue purified via column chromatography eluting with petrol/ether (4:1) then (2:1) to give a yellow oil, 2-(13-bromotridecyloxy)tetrahydro-2H-pyran (186) (6.13 g, 81 %), which showed δH (500 MHz, CDCl3): 4.58 (1H, t, J 2.8 Hz), 3.90-3.85 (1H, m), 3.73 (1H, dt, J 6.95, 9.8 Hz), 3.52-3.47 (1H, m), 3.38 (1H, dt, J 6.6, 9.45 Hz), 1.85 (2H, pent, J 7.25 Hz), 1.83-1.80 (1H, m), 1.74-1.69 (1H, m), 1.64-1.51 (8H, m), 1.45-1.39 (2H, m), 1.38-1.22 (15H, br.m including br.s at 1.34), 0.88 (1H, t, J 6.65 Hz); δc (125 MHz, CDCl3): 98.8, 63.4, 62.3, 34.0, 32.9, 30.8, 29.8, 29.6, 29.2, 26.2, 25.5, 20.9; vmax; 2943, 2864, 1442 cm⁻¹ [Found M+: 363.3718; C18H35BrO2 requires: 363.3800].
Experiment 45: 1-Phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylthio)-1H-tetrazole (187)

2-(13-Bromotridecylxylo)tetrahydro-2H-pyran (186) (3.00 g, 8.26 mmol) was added, with vigorous stirring, to 1-phenyl-1H-tetrazole-5-thiol (1.77 g, 9.91 mmol, 1.2 mol. equiv.) and anhydrous potassium carbonate (3.42 g, 24.77 mmol, 3 mol. equiv.) in acetone (100 ml, HPLC grade). The reaction was refluxed for 18 hrs; when TLC analysis indicated completion of the reaction, the inorganic solids were filtered off and washed with acetone. The organic filtrate was evaporated and extracted with dichloromethane (100 ml) and water (150 ml). The aqueous layer was re-extracted with further dichloromethane (3 x 50 ml) and the combined organic layers were dried and evaporated. The crude yellow oil was purified via column chromatography eluting with petrol/ethyl acetate (4:1 then 2:1) to give a colourless oil, 1-phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylthio)-1H-tetrazole (187) (2.31 g, 61 %), which showed δH (500 MHz, CDCl3): 7.60-7.51 (5H, m), 4.56 (1H, t, J 2.85 Hz), 3.88-3.84 (1H, m), 3.72 (1H, dt, J 6.9, 9.45 Hz), 3.51-3.47 (1H, m), 3.36 (1H, dt, J 6.6, 13.2 Hz), 1.80 (4H, pent, J 7.55 Hz), 1.73-1.68 (1H, m), 1.60-1.52 (8H, m), 1.43 (2H, pent, J, 7.55 Hz), 1.34-1.23 (15H, br., including br. s at 1.25); δC (125 MHz, CDCl3): 154.5, 133.8, 130.0, 129.8, 123.9, 98.9, 64.4, 62.3, 60.4, 33.4, 30.8, 30.3, 30.2, 29.8, 29.6, 29.2, 26.2, 25.7, 25.5, 20.9; νmax: 2943, 2864, 1497, 1442 cm⁻¹ [Found M+: 460.6829; C25H40N4O2S requires: 460.6849].
Experiment 46: 1-Phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylsulfonyl)-1H-tetrazole (188)

A solution of ammonium molybdate (VI) tetrahydrate (3.10 g, 2.51 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (8 ml, 35 % w/w), was added to a stirred solution of 1-phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylthio)-1H-tetrazole (187) (2.31 g, 5.01 mmol) in THF (20 ml) and IMS (40 ml) at 12 °C and stirred the mixture at 15-20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (1.24 g, mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (4 ml, 35 % w/w) was added and the reaction mixture stirred for 18 hrs at RT. The mixture was poured into water (500 ml) and extracted with dichloromethane (3 x 200 ml); the combined organic extracts were dried and the solvent evaporated. The crude product was purified via column chromatography eluting with petrol/ether (4:1) to give a colourless oil, 1-phenyl-5-(13-(tetrahydro-2H-pyran-2-yloxy)tridecylsulfonyl)-1H-tetrazole (188) (1.75 g, 71 %), which showed δ_H (500 MHz, CDCl₃): 7.71-7.68 (2H, m), 7.62-7.59 (3H, m), 4.56 (1H, t, J 2.85 Hz), 3.90-3.83 (1H, m), 3.70 (1H, dist. t, J 7.6 Hz), 3.53-3.47 (1H, m), 3.37 (1H, dt, J 6.75, 9.45 Hz), 1.89 (2H, pent, J 7.9 Hz), 1.83-1.68 (1H, m), 1.60-1.52 (8H, m), 1.50-1.23 (19H, br.m including br.s at 1.28); δ_C (125 MHz, CDCl₃): 153.5, 133.1, 131.4, 129.7, 125.1, 98.9, 64.4, 62.3, 60.4, 42.8, 30.8, 30.3, 30.2, 29.8, 29.6, 29.2, 26.2, 25.7, 25.5, 20.9; ν_max: 2943, 2864, 1497, 1442 cm⁻¹ [Found M+: 492.6728; C₂₅H₄₀N₄O₄S requires: 492.6835].
Experiment 47: 2-((R)-16-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)heptadecyloxy) tetrahydro-2H-pyran (190)

A solution of (R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)butanal (178) (0.80 g, 4.62 mmol, 1.3 mol. equiv.) and 1-phenyl-5-(13-(tetrahydro-2H-pyran-2- yloxy)tridecylsulfonyl)-1H-tetrazole (188) (1.75 g, 3.55 mmol) in dry THF (50 ml), was stirred under nitrogen at -15 °C. Lithium bis(trimethylsilyl)amide (5.03 ml, 5.33 mmol, 1.06 M) was added dropwise between -12 °C and -5 °C and the solution was stirred for 18 hrs. When TLC showed no starting material was left, sat. aq. ammonium chloride (50 ml) and petrol/ethyl acetate (50 ml, 1:1) were added. The aqueous layer was re-extracted with further petrol/ether (2 x 50 ml, 1:1) and the combined organic layers were dried and evaporated to give a crude product. This product was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a colourless oil, 2-((R)-(E/Z)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadec-13-enyloxy)tetrahydro-2H-pyran (189) (1.39 g, 89 %). Palladium on charcoal (0.5 g, 10%) was added to a stirred solution of the above product (1.39 g, 3.16 mmol) in IMS (30 ml). The mixture was stirred, while being hydrogenated at atmospheric pressure. When no more hydrogen was being absorbed, the catalyst was removed via suction filtration on a pad of celite and was washed with THF (25 ml). The filtrate was evaporated to give a colourless oil, 2-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecyloxy)tetrahydro-2H-pyran (190) (1.27 g, 90 %), which showed δ_H (500 MHz, CDCl_3): 4.58 (1H, dd, J 2.85, 4.4 Hz), 4.00 (1H, dd, J 6.3, 7.9 Hz), 3.89-3.85 (2H, m), 3.76-3.70 (1H, m), 3.60 (1H, t, J 7.55 Hz), 3.52-3.48 (1H, m), 3.39 (1H, dt, J 6.6, 9.45 Hz), 1.86-1.80 (1H, m), 1.75-1.69 (1H, m), 1.61-1.51 (9H, m), 1.41 (3H, s), 1.36 (3H, s), 1.34-1.21 (23H, br. m including br. s at 1.26), 1.11-0.97 (1H, m), 0.96 (3H, d, J 6.6 Hz); δ_C (125 MHz, CDCl_3): 108.5, 98.9, 80.4, 67.8, 67.7, 62.3, 36.5, 32.7, 30.8, 29.9, 29.8, 29.7, 29.6, 29.5, 26.9, 26.6, 26.3, 25.6, 25.5, 19.7,
15.6; \(\nu_{\text{max}} \): 2941, 2843, 1464 cm\(^{-1}\); \([\alpha]^{22}_D = +15.78\) (CHCl\(_3\), 1.098 \(\mu\)mol) [Found M+Na\(^+\): 463.41; \(\text{C}_{27}\text{H}_{52}\text{NaO}_4\) requires: 463.38].
Experiment 48: (R)-16-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)heptadecan-1-ol (191)

A solution of pyridinium-p-toluene sulfonate (6.67 g, 26.55 mmol, 10 mol. equiv.) in methanol (5 ml) was added to a stirred solution of 2-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecyloxy)tetrahydro-2H-pyran (190) (1.17 g, 2.65 mmol) in THF (50 ml) and the solution refluxed for 2.5 hrs. When TLC showed no starting material was left, sat. aq. sodium hydrogen carbonate (20 ml) and water (50 ml) were added and the product extracted with ethyl acetate (3 x 50 ml). The combined organic layers were dried and the solvent evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ethyl acetate (5:1) then petrol/ethyl acetate (1:1) to give a white solid, (R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecan-1-ol (191) (0.40 g, 43 %), which showed δH (500 MHz, CDCl3): 3.85 (1H, dt, J6.2, 7.75 Hz), 3.77 (1H, q, J7 Hz), 3.49 (1H, t, J7.75 Hz), 3.41 (2H, t, J6.6 Hz), 1.52-1.48 (1H, m), 1.44 (3H, s), 1.43-1.39 (1H, m), 1.35 (3H, s), 1.36-1.12 (28H, m), 1.01 (3H, d, J7 Hz); δC (125 MHz, CDCl3): 108.7, 80.6, 68.2, 62.7, 37.0, 33.3, 33.2, 30.4, 30.2, 30.14, 30.11, 30.08, 30.0, 27.4, 27.0, 26.3, 25.9, 15.9; νmax: 3399, 2925, 2854, 1464 cm⁻¹; [α]D² = +21.54 (CHCl₃, 1.078 μmol); m.p. 55-56 °C; [Found M+Na⁺: 379.31; C₂₂H₄₄NaO₃ requires: 379.32].
N-Bromosuccinimide (0.26 g, 1.46 mmol, 1.3 mol. equiv.) was added in portions, over 15 mins, to a stirred solution of \((R)-16-((S)-2,2\text{-dimethyl-1,3-dioxolan-4-yl})\text{heptadecan-1-ol}\) (191) (0.40 g, 1.12 mmol) and triphenyl phosphine (0.59 g, 2.25 mmol, 2 equiv) and sodium hydrogen carbonate (0.1 g) in dichloromethane (20 ml) at 0 °C. The mixture was stirred at RT for 1 hr; when TLC analysis indicated completion of the reaction, it was quenched with sat. aq. sodium meta-bisulfite (10 ml). The aqueous layer was re-extracted with dichloromethane (2 x 25 ml) and the combined organic extracts washed with water (25 ml), dried and evaporated to give a residue. This was refluxed for 30 mins with petrol/ethyl acetate (1:1, 50 ml), filtered and washed with petrol/ethyl acetate (1:1, 50 ml). The filtrate was evaporated and the resultant residue purified via column chromatography eluting with petrol/ethyl acetate (5:2) to give a colourless oil, \((S)-4-((R)-17\text{-bromoheptadecan-2-yl})\text{2,2\text{-dimethyl-1,3-dioxolane}}\) (192) (0.44 g, 93 %), which showed \(\delta_H\) (500 MHz, CDCl₃): 3.99 (1H, dd, J 6.2, 7.9 Hz), 3.86 (1H, q, J 7 Hz), 3.59 (1H, t, J 7.8 Hz), 3.41 (2H, t, J 7 Hz), 1.85 (2H, pent, J 8 Hz), 1.60-1.52 (1H, m), 1.44-1.40 (2H, m), 1.42 (3H, s), 1.36 (3H, s), 1.3*2-1.19 (23H, m), 1.11-1.06 (1H, m), 0.96 (3H, d, J 6.6 Hz); \(\delta_C\) (125 MHz, CDCl₃): 108.5, 80.4, 67.8, 36.5, 34.0, 32.7, 29.9, 19.6, 29.6, 29.5, 29.4, 28.8, 28.2, 27.0, 26.6, 25.5, 15.6; \(v_{\text{max}}\): 2925, 2855, 1464 cm⁻¹; \([\alpha]_{22}^D = +15.85\) (CHCl₃, 1.051 µmol) [Found M+Na⁺: 441.19; C₂₂H₄₅BrNaO₂ requires: 441.23].
(S)-4-((R)-17-Bromoheptadecan-2-yl)-2,2-dimethyl-1,3-dioxolane (192) (0.44 g, 1.05 mmol) was added, with vigorous stirring, to 1-phenyl-1H-tetrazole-5-thiol (0.28 g, 1.55 mmol) and anhydrous potassium carbonate (0.53 g, 3.87 mmol, 3 mol. equiv.) in acetone (30 ml). The reaction was stirred for 18 hrs, then the solvent was evaporated and the resultant residue taken up in petrol/ethyl acetate (1:1, 50 ml). The resultant solution was washed with water (50 ml), which was then back-extracted with petrol/ethyl acetate (1:1, 2 x 50 ml) and the combined organic layers were then dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 5-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecylthio)-1-phenyl-1H-tetrazole (193) (0.49 g, 92 %), which showed δH (500 MHz, CDCl₃): 7.60-7.54 (5H, m), 4.00 (1H, dd, J 6.1, 7.6 Hz), 3.87 (1H, q, J 6.7 Hz), 3.60 (1H, t, J 7.6 Hz), 3.39 (2H, t, J 7.3 Hz), 1.82 (2H, pent, J 7.3 Hz), 1.58-1.53 (1H, m), 1.46-1.41 (2H, m), 1.40 (3H, s), 1.35 (3H, s), 1.33-1.25 (23H, m), 1.11-1.04 (1H, m), 0.96 (3H, d, J 6.6 Hz); δC (125 MHz, CDCl₃): 154.5, 133.8, 130.0, 129.7, 123.8, 108.4, 80.4, 67.8, 36.5, 33.3, 32.7, 29.8, 29.61, 29.57, 29.5, 29.4, 29.1, 29.0, 28.6, 27.0, 26.6, 25.5, 15.6; v max: 2925, 2855, 1598, 1499, 1464 cm⁻¹; [α]D²³ = +13.48 (CHCl₃, 0.987 µmol) [Found M+Na⁺: 539.31; C₂₉H₄₈N₄NaO₂S requires: 539.34].
A solution of ammonium molybdate (VI) tetrahydrate (0.5873 g, 0.4752 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (5 ml, 35 % w/w) was added to a stirred solution of 5-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecylthio)-1-phenyl-1H-tetrazole (193) (0.4906 g, 0.9504 mmol) in THF (5 ml) and IMS (10 ml) at 12 °C and stirred at 15-20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (0.2349 g, 0.1901 mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (2 ml, 35 % w/w) was added and the reaction mixture stirred for 18 hrs. The mixture was then poured into water (50 ml) and extracted with dichloromethane (3 x 50 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ethyl acetate (5:2) to give a white solid, 5-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecylsulfonyl)-1-phenyl-1H-tetrazole (194) (0.3797 g, 73 %), which showed δ_H (500 MHz, CDCl$_3$): 7.70-7.68 (2H, m), 7.65-7.59 (3H, m), 4.00 (1H, dd, J 6.3, 7.9 Hz), 3.87 (1H, q, J 7 Hz), 3.73 (2H, dist t), 3.60 (1H, t, J 7.9 Hz), 1.93 (2H, pent, J 7.2 Hz), 1.53-1.48 (2H, m), 1.41 (3H, s), 1.35 (3H, s), 1.33-1.25 (24H, m), 1.11-1.04 (1H, m), 0.96 (3H, d, J 6.6 Hz); δ_C (125 MHz, CDCl$_3$): 153.5, 133.0, 131.4, 129.7, 125.0, 108.5, 80.4, 67.8, 56.0, 36.5, 32.7, 29.9, 29.7, 29.61, 29.57, 29.5, 29.2, 28.9, 28.2, 27.0, 26.6, 25.6, 15.6; v$_{max}$: 3015, 2918, 2855, 1598, 1499, 1464 cm$^{-1}$; $[\alpha]_{D}^{23}$ = +12.87 (CHCl$_3$, 1.574 μmol); m.p. 51-53 °C; [Found M+Na$^+$: 571.30; C$_{29}$H$_{48}$N$_4$NaO$_4$S requires: 571.33].
Experiment 52: Methyl 2-((1R,2R,19R)-1-(tert-butyldimethylsilyloxy)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)eicosyl)tetracosanoate (201)

Lithium bis(trimethylsilyl)amide (0.979 ml, 1.038 mmol, 1.06 M) was added dropwise to a stirred solution of methyl 2-((R)-1-(tert-butyldimethylsilyloxy)-3-oxopropyl)tetracosanoate (200) (0.3936 g, 0.617 mmol) and 5-((R)-16-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)heptadecylsulfonyl)-1-phenyl-1H-tetrazole (194) (0.3797 g, 0.6917 mmol) in dry THF (30 ml) at -15 °C. The mixture was stirred for 18 hrs at RT, when TLC analysis indicated completion of the reaction. Sat. aq. ammonium chloride (20 ml) and petrol/ethyl acetate (1:1, 20 ml) were added. The aqueous layer was re-extracted with petrol/ethyl acetate (1:1, 2 x 20 ml) and the combined organic extracts washed with brine (20 ml), dried and evaporated to give a yellow oil. The crude product was purified via column chromatography eluting with petrol/ethyl acetate (20:1) to give a colourless oil, methyl 2-((1R,2R,19R)-(E/Z)-1-(tert-butyldimethylsilyloxy)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)eicos-3-enyl)tetracosanoate (0.2330 g, 39 %). Palladium on charcoal (10 %, 0.1 g) was added to a stirred solution of the above alkenes (0.3517 g, 0.3945 mmol) in ethyl acetate (15 ml). The mixture was stirred, while being hydrogenated at atmospheric pressure; when hydrogen absorption was complete, the mixture was filtered through a pad of celite and washed with ethyl acetate (15 ml). The filtrate was evaporated to give a colourless oil, methyl 2-((1R,2R,19R)-1-(tert-butyldimethylsilyloxy)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)eicosyl)tetracosanoate (201) (0.2314 g, 99 %), which showed δH (500 MHz, CDCl3): 4.00 (1H, dd, J 6.2, 8 Hz), 3.95-3.90 (1H, m), 3.88 (1H, q, J 7 Hz), 3.66 (3H, s), 3.60 (1H, t, J 8 Hz), 2.54 (1H, ddd, J 3.8, 7.2, 11 Hz), 1.62-1.51 (4H, m), 1.41 (3H, s), 1.36 (3H, s), 1.35-1.25 (72H, br.m including br.s at 1.26), 1.11-1.07 (1H, m), 0.97 (3H, d, J 6.65 Hz), 0.89 (3H, t, J 7 Hz), 0.87 (9H, s),
0.05 (3H, s), 0.03 (3H, s); δ_C (125 MHz, CDCl₃): 175.1, 108.5, 80.5, 76.8, 73.2, 51.5, 51.2, 36.5, 33.7, 31.9, 29.9, 29.8, 29.72, 29.68, 29.59, 29.55, 29.5, 29.4, 29.3, 27.8, 27.5, 27.0, 26.6, 25.7, 25.5, 23.7, 22.7, 18.0, 15.6, 14.1, -4.4, -4.9; ν_max: 2946, 2855, 1740, 1464 cm⁻¹; [α]_D^{24} = +3.78 (CHCl₃, 0.978 µmol) [Found M⁺Na⁺: 915.73; C₅₆H₁₁₂NaO₅Si requires: 915.82].
Experiment 53: Methyl 2-((1R,2R,19R)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyicosyl)tetracosanoate (203)

A dry polyethylene vial, equipped with a rubber septum, was charged with methyl 2-((1R,2R,19R)-1-(tert-butyl dimethylsilyloxy)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (201) (0.2314 g, 0.2584 mmol) in dry THF (10 ml) under nitrogen at 0 °C. Pyridine (2.5 ml) and hydrogen fluoride-pyridine complex (1.1 ml, 0.7751 mmol, 3 mol. equiv.) were added and the mixture stirred for 18 hrs at 43 °C. When TLC analysis indicated completion of the reaction the mixture was neutralised by slowly pouring it into sat. aq. sodium hydrogen carbonate (20 ml) until no more carbon dioxide was liberated. The product was extracted with petrol/ethyl acetate (1:1, 3 x 10 ml), dried and evaporated to give a white solid. This was purified via column chromatography eluting with petrol/ethyl acetate (4:1) to give a white solid, methyl 2-((1R,2R,19R)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyicosyl)tetracosanoate (203) (0.1425 g, 71 %), which showed δ_H (500 MHz, CDCl_3): 4.00 (1H, dd, J 6.2, 8 Hz), 3.88 (1H, q, J 7 Hz), 3.71 (3H, s), 3.68-3.63 (1H, m), 3.60 (1H, t, J 7.7 Hz), 2.45 (1H, dt, J 5.5, 10.8 Hz), 1.41 (3H, s), 1.36 (3H, s), 1.35-1.19 (69H, br. m including br. s at 1.26), 1.11-1.07 (1H, m), 0.96 (3H, d, J 7 Hz), 0.88 (3H, t, J 7 Hz); δ_C (125 MHz, CDCl_3): 176.2, 108.5, 80.5, 72.3, 67.8, 51.5, 50.9, 36.5, 35.7, 32.7, 31.9, 29.9, 29.69, 29.66, 29.64, 29.60, 29.57, 29.52, 29.50, 29.47, 29.4, 29.3, 27.4, 27.0, 26.6, 25.7, 25.5, 22.7, 15.6, 14.1; v_max: 3489, 2925, 2855, 1715, 1464 cm⁻¹; [α]²⁴_D = +15.21 (CHCl₃, 1.156 μmol); m.p. 67-68 °C; [Found M+Na⁺: 801.71; C₅₀H₇₀NaO₅ requires: 801.73].
Experiment 54: Methyl 2-((1R,2R,19R)-1-acetoxy-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (166)

![Chemical Structure]

A mixture of acetic anhydride (3 ml) and anhydrous pyridine (3 ml) was added to a stirred solution of methyl 2-((1R,2R,19R)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-1-hydroxyicosyl)tetracosanoate (203) (0.1425 g, 0.1829 mmol) in dry toluene (10 ml). The mixture was stirred for 16 hrs at RT, then diluted with toluene (25 ml); the solvent was removed under reduced pressure to give a crude oil. This was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a white solid, methyl 2-((1R,2R,19R)-1-acetoxy-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (166) (0.1337 g, 89 %), which showed \(\delta_H \) (500 MHz, CDCl\(_3\)): 5.11-5.00 (1H, m), 4.00 (1H, dd, J 6, 7.9 Hz), 3.88 (1H, q, J 6.9 Hz), 3.70 (3H, s), 3.61 (1H, t, J 737 Hz), 2.63 (1H, ddd, J 4.5, 6.9, 10.8 Hz), 2.04 (3H, s), 1.41 (3H, s), 1.36 (3H, s), 1.65-1.23 (76H, br. m including br. s at 1.26), 1.12-1.07 (1H, m), 0.96 (3H, d, J 7 Hz), 0.88 (3H, t, J 7 Hz); \(\delta_C \) (125 MHz, CDCl\(_3\)): 173.6, 170.5, 108.5, 80.5, 74.1, 67.8, 51.5, 49.6, 36.5, 33.7, 32.7, 31.9, 31.7, 29.9, 29.7, 29.62, 29.59, 29.53, 29.51, 29.39, 29.35, 29.3, 28.1, 27.5, 27.0, 26.6, 25.5, 25.0, 22.7, 21.0, 21.0, 15.6, 14.1; \(\nu_{\text{max}} \): 2925, 2855, 1745, 1464 cm\(^{-1}\); \([\alpha]^{24}_D = +15.89 \text{ (CHCl}_3, 1.245 \mu\text{mol)}\); m.p. 37-38 °C; [Found M+Na\(^+\): 843.68; C\(_{52}H_{100}NaO_6\) requires: 843.74].
Experiment 55: Methyl 2-((1R,2R,19R)-1-acetoxy-19-methyl-20-oxoicosyl) tetracosanoate (165)

![Chemical Structure](image)

Periodic acid (0.41 g, 1.83 mmol, 3 mol. equiv.) was added to a stirred solution of methyl 2-((1R,2R,19R)-1-acetoxy-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl) tetracosanoate (166) (0.5 g, 0.61 mmol) in dry ether (20 ml), at RT under nitrogen, and the reaction mixture was stirred for 18 hrs. The mixture was filtered through a bed of celite and washed with ether (20 ml). The solvent was evaporated and the crude product was purified by column chromatography eluting with petrol/ethyl acetate (4:1) to give a white solid, methyl 2-((1R,2R,19R)-1-acetoxy-19-methyl-20-oxoicosyl) tetracosanoate (165) (0.27 g, 60 %), which showed 5H (500 MHz, CDCl3): 9.61 (1H, t, J 1.9Hz), 5.11-5.07 (1H, m), 3.68 (3H, s), 2.62 (1H, ddd, J 4.0, 7.0, 10.5 Hz), 2.32 (1H, sext, J 2.0, 7.0 Hz), 2.05 (3H, s), 1.75-1.19 (76H, br. m including br. s at 1.26), 1.10 (3H, d, J 7.0 Hz), 0.89 (3H, t, J 6.7 Hz); 8c (125 MHz, CDCl3): 205.4, 173.7, 170.3, 74.1, 51.5, 49.6, 46.3, 31.9, 31.7, 30.5, 29.7, 29.63, 29.60, 29.51, 29.48, 29.39, 29.35, 29.3, 28.1, 27.5, 26.9, 25.0, 22.7, 21.0, 14.1, 13.3; vmax: 2925, 2855, 1745, 1468 cm⁻¹; [α]26D = +4.73 (CHCl3, 1.245 µmol); m.p. = 32 - 33 °C [Found M+Na+: 771.58; C₄₈H₉₂NaO₅ requires: 771.68].

Methyl 2-((1R,2R,19R)-1-acetoxy-19-methyl-20-oxoicosyl)tetracosanoate (165) (0.24 g, 0.32 mmol) in dry 1,2-dimethoxyethane (10 ml) was added to a stirred solution of 5-((17S,18S)-17-(tert-butyldimethylsilyloxy)-18-methylhexatriacontyl sulfonyl)-1-phenyl-1H-tetrazole (164) (0.34 g, 0.40 mmol, 1.25 mol. equiv.) in dry 1,2-dimethoxyethane (20 ml) under nitrogen at RT. The mixture was cooled to -20°C and potassium bis(trimethylsilyl)amide (1.04 ml, 0.52 mmol, 0.5 M in toluene) was added and the mixture was allowed to reach RT and then stirred for 1.5 hrs. When TLC analysis indicated completion of the reaction, sat. aq. ammonium chloride (25 ml) and petrol/ether (1:1, 50 ml) were added. The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 40 ml) and the combined organic layers were dried and the solvent evaporated. The crude compound was purified via column chromatography eluting with petrol/ether (18:1) to give a white solid, methyl (2R,3R,21R,39S,40S,E)-3-acetoxy-39-(tert-butyldimethylsilyloxy)-2-docosyl-21,40-dimethyloctapentacont-22-enoate (204) (0.15 g, 34 %), which showed δ_H (500 MHz, CDCl₃): 5.34 (1H, td, J 6.65, 15 Hz), 5.23 (1H, dd, J 7.5, 15 Hz), 5.09 (1H, ddd, J 4.1, 7.25, 8.2 Hz), 3.68 (3H, s), 3.49 (1H, dt, J 3.5, 6.3 Hz), 2.62 (1H, ddd, J 4.4, 7, 11 Hz), 2.05 (3H, s), 1.99 (2H, q, J 7 Hz), 1.70-1.20 (139H, br. m including br. s at 1.27), 1.08-1.00 (1H, m), 0.93 (3H, d, J 7 Hz), 0.89 (6H, t, J 6.65 Hz), 0.88 (9H, s), 0.80 (3H, d, J 7 Hz), 0.04 (3H, s), 0.03 (3H, s); δ_C (125 MHz, CDCl₃): 173.6, 170.3, 136.5, 128.4, 75.9, 74.1, 51.5, 49.6, 37.7, 37.2, 36.7, 33.5, 32.6, 32.5, 31.9, 31.7, 30.0, 29.9, 29.8, 29.70, 29.67, 29.62, 29.58, 29.54, 29.52, 29.43, 29.41, 29.38, 29.1, 28.1, 27.7, 27.5, 27.4, 26.0, 25.9, 25.0, 22.7, 21.0, 20.9, 18.2, 14.4, 14.1, -4.2, -4.4; v_max: 2923, 2853, 1745, 1464 cm⁻¹; [α]²₂₀D = -3.18 (CHCl₃, 0.875 µmol); m.p. = 25-27°C [Found M+Na⁺: 1404.25; C₉₁H₁₈₀NaO₅Si requires: 1404.35].

A dry polyethylene vial, equipped with a rubber septum, was charged with methyl (2R,3R,21R,39S,40S,E)-3-acetoxy-39-(tert-butyldimethylsilyloxy)-2-docosyl-21,40-dimethyloctapentacont-22-enoate (204) (120 mg, 0.0869 mmol) in dry THF (5 ml) under nitrogen at 0 °C. Pyridine (0.5 ml) and hydrogen fluoride-pyridine complex (0.5 ml, 0.2607 mmol, 3 mol. equiv.) were added and the mixture stirred for 18hrs at 43 °C. When TLC analysis indicated completion of the reaction, the mixture was neutralised by slowly pouring it into sat. aq. sodium hydrogen carbonate (10 ml) until no more carbon dioxide was liberated. The product was extracted with petrol/ether (1:1, 3 x 25 ml), dried and evaporated to give a white solid. This was purified via column chromatography eluting with petrol/ether (5:1) to give a white solid, methyl (2R,3R,21R,39S,40S,E)-3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (205) (60 mg, 55 %), which showed δH (500 MHz, CDCl3): 5.33 (1H, td, J 6.6, 15.5 Hz), 5.24 (1H, dd, J 7.6, 15.5 Hz), 5.09 (1H, dt, J 3.9, J 8 Hz), 3.69 (3H, s), 3.53-3.49 (1H, m), 2.62 (1H, ddd, J 4.4, 7, 10.9 Hz), 2.04 (3H, s), 1.98 (2H, q, J 7 Hz), 1.63-1.20 (140H, br. m including br. s at 1.27), 1.18-1.11 (1H, m), 0.94 (3H, d, J 6.6 Hz), 0.89 (6H, t, J 6.7 Hz), 0.86 (3H, d, J 7 Hz); δC (125 MHz, CDCl3): 173.6, 170.3, 136.5, 128.4, 75.3, 74.1, 51.5, 49.6, 38.3, 37.2, 36.7, 34.5, 33.5, 32.6, 31.9, 31.7, 30.0, 29.9, 29.8, 29.72, 29.68, 29.63, 29.60, 29.48, 29.45, 29.44, 29.42, 29.39, 29.1, 28.1, 27.7, 27.5, 27.4, 27.3, 26.2, 25.0, 22.7, 21.0, 20.9, 18.2, 14.4, 13.6; νmax: 3542, 2923, 2843, 1745, 1464 cm⁻¹; [α]D22 = -3.59 (CHCl3, 1.045 μmol); m.p. = 36-38 °C [Found M+Na⁺: 1290.22; C₈₅H₁₆₆NaO₅ requires: 1290.26].

Methyl (2R,3R,21R,39S,40S,E)-3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyl octapentacont-22-enoate (205) (25.0 mg, 0.0237 mmol) in dichloromethane (1 ml) was added to a stirred suspension of pyridinium chlorochromate (10 mg, 0.0701 mmol, 3 mol. equiv.) in dichloromethane (3 ml). The resultant mixture was stirred at RT for 2 hrs and when TLC analysis indicated completion of the reaction the mixture was diluted with ether (1 ml) and then filtered on a bed of silica gel. The filtrate was evaporated and the crude product purified via column chromatography eluting with petrol/ether (5:2) to give a white solid, (2R,3R,21R,40S,E) methyl 3-acetoxy-2-docosyl-21,40-dimethyl-39-oxooctapentacont-22-enoate (85) (20 mg, 80 %), which showed δ_H (500 MHz, CDCl$_3$): 5.33 (1H, dt, J 6.6, 15.1 Hz), 5.24 (1H, dd, J 7.25, 15.1 Hz), 5.09 (1H, dt, J 4.1, 8.15 Hz), 3.68 (3H, s), 2.62 (1H, ddd, J 4.45, 6.95, 11.05 Hz), 2.50 (1H, sext, J 6.95 Hz), 2.41 (2H, dt, J 2.25, 7.25 Hz), 2.03 (3H, s), 1.97 (2H, q, J 6.6 Hz), 1.63-1.18 (137H, m, including s at 1.26), 1.05 (3H, d, J 6.6 Hz), 0.94 (3H, d, J 6.6 Hz), 0.89 (6H, t, J 6.95 Hz); δ_C: 215.2, 173.7, 170.3, 136.5, 128.4, 74.1, 51.5, 49.6, 46.3, 41.2, 37.3, 36.7, 35.6, 33.1, 32.6, 31.9, 29.8, 29.7, 29.64, 29.59, 29.54, 29.51, 29.48, 29.43, 29.39, 29.2, 28.1, 27.5, 27.4, 27.3, 25.0, 23.7, 22.7, 21.0, 19.5, 16.4, 14.1; ν_{max}: 2932, 2853, 1748, 1711, 1466 cm$^{-1}$; [α]$^2_D = +3.52$ (CHCl$_3$, 1.094 µmol); [Found M+Na$^+$: 1288.22; C$_{85}$H$_{164}$NaO$_5$ requires: 1288.25].
4.4 - Synthesis of trans-alkene hydroxy and keto mycolic acids (86), (87) and (88).

\[
\begin{align*}
\text{OH} & \quad \text{(CH}_2\text{)}_{15} \\
\text{OH} & \quad \text{(CH}_2\text{)}_{17} \\
\text{O} & \quad \text{(CH}_2\text{)}_{21}\text{CH}_3
\end{align*}
\]

Lithium hydroxide monohydrate (17.04 mg, 0.7102 mmol, 30 mol. equiv.) was added to a stirred solution of methyl (2R,3R,21R,39S,40S,E)-3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (205) (30.0 mg, 0.0237 mmol) in THF (3 ml), methanol (0.5 ml) and water (0.5 ml) at RT. The mixture was stirred at 43 °C for 18 hrs, when TLC analysis indicated completion of the reaction. The mixture was cooled to RT and acidified with hydrochloric acid (5 %, 2 ml) and the aqueous layer extracted with warm petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and then purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, (2R,3R,21R,39S,40S,E)-2-docosyl-3,39-dihydroxy-21,40-dimethyloctapentacont-22-enoic acid (88) (18.6 mg, 65 %), which showed \(\delta_H\) (500 MHz, CDCl3): 5.33 (1H, dt, J 6.6, 15.45 Hz), 5.23 (1H, dd, J 7.55, 15.45 Hz), 3.70-3.69 (1H, m), 3.52-3.51 (1H, m), 2.45 (1H, br. pent, J 4.7 Hz), 2.05-2.00 (1H, m), 1.97 (2H, q, J 6.9 Hz), 1.79-1.71 (1H, m), 1.66-1.59 (2H, m), 1.64-1.23 (139H, br. m, including br. s at 1.26), 0.94 (3H, d, J 6.6 Hz), 0.89 (6H, t, J 6.95 Hz), 0.86 (3H, d, J 7.25 Hz); \(\delta_C\): 177.3, 136.5, 128.5, 75.4, 72.2, 50.5, 37.3, 36.7, 34.4, 33.4, 32.6, 31.9, 30.0, 29.7, 29.6, 29.52, 29.46, 29.4, 29.1, 27.4, 22.7, 21.0, 16.6, 14.1; \(\nu_{\text{max}}\): 3534, 2922, 2854, 1751, 1466 cm\(^{-1}\); \([\alpha]_{21}^D = -2.07\) (CHCl3, 0.743 µmol) [Found M+Na\(^+\): 1234.39; requires: 1234.24].

Lithium hydroxide monohydrate (12.0 mg, 0.3551 mmol, 30 mol. equiv.) was added to a stirred solution of (2R,3R,21R,39R,40R,E) methyl 3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (163) (15.0 mg, 0.01184 mmol) in THF (2 ml), methanol (0.2 ml) and water (0.2 ml) at RT. The mixture was stirred at 43 °C for 18 hrs, when TLC analysis indicated completion of the reaction. The mixture was cooled to RT and acidified with hydrochloric acid (5 %, 2 ml) and the aqueous layer extracted with warm petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, (2R,3R,21R,39R,40R,E)-2-docosyl-3,39-dihydroxy-21,40-dimethyloctapentacont-22-enoic acid (87) (8.6 mg, 59 %), which showed δH (500 MHz, CDCl3): 5.33 (1H, dt, J 6.6, 15.45 Hz), 5.23 (1H, dd, J 7.55, 15.45 Hz), 3.70-3.69 (1H, m), 3.52-3.51 (1H, m), 2.45 (1H, br. pent, J 4.7 Hz), 2.05-2.00 (1H, m), 1.97 (2H, q, J 6.9 Hz), 1.79-1.71 (1H, m), 1.66-1.59 (2H, m), 1.64-1.23 (139H, br. m, including br. s at 1.26), 0.94 (3H, d, J 6.6 Hz), 0.89 (6H, t, J 6.95 Hz), 0.86 (3H, d, J 7.25 Hz); δc: 177.3, 136.5, 128.5, 75.4, 72.2, 50.5, 37.3, 36.7, 34.4, 33.4, 32.6, 31.9, 30.0, 29.7, 29.6, 29.52, 29.46, 29.4, 29.1, 27.4, 22.7, 21.0, 16.6, 14.1; vmax: 3534, 2922, 2854, 1751, 1466 cm⁻¹; [α]D² = +1.67 (CHCl₃, 1.287 μmol) [Found M+Na⁺: 1234.47; C₈₂H₁₆₂NaO₄ requires: 1234.24].

2,3-Dihydropyran (92.8 mg, 1.103 mmol, 20 mol. equiv., \(d = 0.928\), 0.1 ml) and pyridinium-\(p\)-toluene sulfonate (7 mg, 0.02762 mmol, 0.5 mol. equiv.) were added to a stirred solution of \((2R,3R,21R,39R,40R,E)\) methyl 3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (206) (70 mg, 0.05524 mmol) in dry dichloromethane (0.5 ml) under nitrogen at RT. The mixture was stirred for 1 hr; when TLC indicated the reaction was complete, the reaction was quenched with sat. aq. sodium hydrogen carbonate (3 ml) and extracted with dichloromethane (2 x 15 ml). The combined organic layers were washed with water (5 ml), dried and evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a colourless oil, \((2R,3R,19R,37R,38R,E)\) methyl 3-acetoxy-2-docosyl-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yl)hexapentacont-20-enoate (207) (72.4 g, 84 %), which showed \(\delta_{\text{H}}\) (500 MHz, \(\text{CDCl}_3\)): 5.33 (1H, dt, \(J 6.65, 8.5\) Hz), 5.24 (1H, dd, \(J 7.55, 15.15\) Hz), 5.11-5.07 (1H, m), 4.68-4.61 (1H, m), 3.96-3.89 (2H, m), 3.68 (3H, s), 3.50-3.44 (1H, m), 2.64-2.60 (1H, m), 2.03 (3H, s), 1.97 (2H, q, \(J 6.6\) Hz), 1.86-1.82 (1H, m), 1.59-1.14 (146H, br. m including br. s at 1.26), 0.94 (3H, d, \(J 6.65\) Hz), 0.89 (6H, t, \(J 6.6\) Hz), 0.84 (3H, d, \(J 6.65\) Hz); \(\delta_{\text{C}}\) (125 MHz, \(\text{CDCl}_3\)): 173.7, 170.3, 136.5, 128.4, 98.5, 81.4, 74.1, 62.8, 51.5, 49.6, 38.3, 37.2, 36.7, 34.5, 33.5, 32.6, 31.9, 31.7, 30.0, 29.9, 29.8, 29.71, 29.65, 29.61, 29.57, 29.52, 29.49, 29.44, 29.42, 29.38, 29.1, 28.1, 27.7, 27.5, 27.4, 27.3, 26.2, 25.0, 22.7, 21.0, 20.9, 18.2, 14.4, 13.6; \(\nu_{\text{max}}\): 2924, 2853 m, 2360 m, 2341 m, 1464 cm\(^{-1}\); \([a]^{23}_{\text{D}} = +1.99\) (CHCl\(_3\), 1.487 \(\mu\)mol) [Found M+Na\(^+\): 1374.39; requires: 1374.32].

Lithium hydroxide monohydrate (52.8 mg, 1.554 mmol, 30 mol. equiv.) was added to a stirred solution of (2R,3R,19R,37R,38R,E) methyl 3-acetoxy-2-docosyl-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yl oxy)hexapentacont-20-enoate (207) (70 mg, 0.05180 mmol) in THF (5 ml), methanol (0.5 ml) and water (0.5 ml) at RT. The mixture was stirred at 43 °C for 18 hrs; when TLC analysis indicated completion of the reaction, it was cooled to RT and acidified with hydrochloric acid (5 %, 2 ml) and the aqueous layer extracted with warm petrol/ether (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and purified via column chromatography eluting with petrol/ethyl acetate (5:2) to give a white solid, (2R,3R,19R,37R,38R,E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yl oxy)hexapentacont-20-enoic acid (208) (46.4 mg, 72 %), which showed

\(\delta_H (500 \text{ MHz, } \text{CDCl}_3): 5.33 (1H, \text{ dt, } J 6.65, 8.5 \text{ Hz}), 5.24 (1H, \text{ dd, } J 7.55, 15.15 \text{ Hz}), 4.68-4.62 (1H, \text{ m}), 3.96-3.89 (1H, \text{ m}), 3.50-3.44 (1H, \text{ m}), 2.49-2.42 (1H, \text{ m}), 1.97 (2H, \text{ q, } J 7.25 \text{ Hz}), 1.88-1.82 (1H, \text{ m}), 1.63-1.21 (149H, \text{ br. m including br. s at 1.26}), 0.94 (3H, \text{ d, } J 6.65 \text{ Hz}), 0.89 (6H, \text{ t, } J 6.6 \text{ Hz}), 0.84 (3H, \text{ d, } J 6.65 \text{ Hz}); \delta_C (125 \text{ MHz, } \text{CDCl}_3): 177.5, 145.5, 136.5, 72.2, 67.4, 60.4, 50.5, 37.3, 36.7, 35.6, 34.5, 32.6, 31.9, 30.9, 30.3, 30.1, 30.0, 29.9, 29.7, 29.6, 29.5, 29.42, 29.37, 29.3, 29.12, 29.08, 28.9, 28.1, 27.3, 26.1, 25.8, 22.7, 22.6, 22.3, 21.1, 21.0, 20.4, 19.4, 14.2, 14.11, 14.06; \nu_{\text{max}}: 3424, 2922, 2852, 2361, 1646 \text{ cm}^{-1}; [\alpha]_{D}^{22} = + 1.75 (\text{CHCl}_3, 1.188 \mu\text{mol}) \) [Found M+Na·: 1318.14; requires: 1318.26].

Imidazole (22.7 mg, 0.3330 mmol, 10 mol. equiv.) was added to a stirred solution of (2R,3R,19R,37R,38R,E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yloxy)hexapentacont-20-enoic acid (208) (45 mg, 0.03330 mmol) in dry DMF (0.2 ml) at RT followed by addition of tert-butyldimethylsilylchloride (50.0 mg, 0.3330 mmol, 10 mol. equiv.) and 4-dimethylaminopyridine (4.01 mg, 0.03330 mmol). The mixture was heated to 70 °C for 18 hrs; when TLC showed no starting material was left, it was diluted with petrol/ethyl acetate (1:1, 15 ml) and sat. aq. sodium hydrogen carbonate (3 ml). The aqueous layer was re-extracted with petrol/ethyl acetate (3 x 15 ml), dried and the solvent evaporated. The residue was dissolved in THF (5 ml), methanol (0.5 ml) and water (0.5 ml); to this, potassium carbonate (100 mg) was added and the mixture stirred at 45 °C for 6 hrs. The mixture was diluted with petrol/ethyl acetate (1:1, 10 ml) and water (1 ml) and acidified with potassium hydrogen sulfate to pH 2. The aqueous layer was re-extracted with petrol/ethyl acetate (1:1, 2 x 10 ml), dried and the solvent evaporated. The crude product was purified via column chromatography eluting with petrol/ethyl acetate (20:1) to give a colourless oil, (2R,3R,19R,37R,38R,E)-3-(tert-butyldimethylsilyloxy)-2-docosyl-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yloxy)hexapentacont-20-enoic acid (209) (34.2 g, 70 %), which showed δH (500 MHz, CDCl3): 5.34 (1H, dt, J 6.6, 8.85 Hz), 5.24 (1H, dd, J 7.55, 15.1 Hz), 4.67-4.62 (1H, m), 3.93-3.89 (1H, m), 3.50-3.44 (2H, m), 2.55-2.51 (1H, m), 1.97 (2H, q, J 6.95 Hz), 1.88-1.82 (1H, m), 1.70-1.31 (147H, br. m including br. s at 1.26), 0.94 (3H, d, J 6.95 Hz), 0.93 (9H, s), 0.89 (6H, t, J 6.6 Hz), 0.84 (3H, d, J 6.95 Hz), 0.15 (3H, s), 0.14 (3H, s); δC (125 MHz, CDCl3): 177.4, 136.6, 128.3, 98.5, 75.3, 73.7, 67.4, 49.9, 41.7, 39.7, 37.6, 36.7, 35.8, 34.8, 33.3, 32.6, 31.9, 31.6, 30.1, 30.0, 29.82,
29.81, 29.73, 29.70, 29.61, 29.57, 29.48, 29.42, 29.37, 29.1, 29.0, 27.7, 27.41, 27.38, 26.3, 25.8, 25.7, 25.2, 22.73, 22.69, 22.6, 21.1, 20.9, 20.4, 19.4, 18.8, 17.8, 14.3, 14.1, 13.6, 11.4, -4.3, -4.9; v_{max}: 3425, 2924, 2853, 2362, 1702, 1464 cm$^{-1}$; $[\alpha]_{D}^{23} = +1.58$ (CHCl$_3$, 0.436 µmol) [Found M+Na$^+$: 1432.32; C$_{93}$H$_{184}$NaO$_5$Si requires: 1432.38].
Pyridinium-p-toluene sulfonate (29.67 mg, 0.1181 mmol) was added to a stirred solution of (2R,3R,19R,37R,38R,E)-3-(tert-butyldimethylsilyloxy)-2-docosyl-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yloxy)hexapentacont-20-enoic acid (209) (17.3 mg, 0.01181 mmol) in THF (1 ml) methanol (0.1 ml) and water (0.1 ml) and the mixture refluxed for 2.5 hrs followed by stirring at 47 °C for 24 hrs, when TLC showed no starting material was left, sat. aq. sodium hydrogen carbonate (0.2 ml) was added and the product extracted with petrol/ethyl acetate (1:1, 3 x 5 ml). The combined organic layers were dried and the solvent evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a colourless oil, (2R,3R,19R,37R,38R,E)-3-(tert-butyldimethylsilyloxy)-2-docosyl-37-hydroxy-19,38-dimethylhexapentacont-20-enoic acid (210) (11.9 mg, 73 %), which showed δ_H (500 MHz, CDCl_3): 5.31 (1H, dt, J 7.55 Hz), 5.24 (1H, dd, J 7.55, 7.6 Hz), 3.83 (1H, dist. pent, J 2.85 Hz), 3.52-3.49 (1H, m), 2.55-2.51 (1H, m), 1.97 (2H, q, J 6.6 Hz), 1.63-1.22 (142H, br. m including br. s at 1.26), 0.97 (3H, d, J 6.65 Hz), 0.93 (9H, s), 0.89 (3H, d, J 7.25 Hz), 0.88 (6H, t, J 6.6 Hz), 0.15 (3H, s), 0.14 (3H, s); δ_C (125 MHz, CDCl_3): 177.7, 136.5, 128.4, 75.3, 73.7, 50.0, 41.4, 38.2, 37.3, 36.7, 35.8, 34.5, 33.4, 32.6, 31.9, 31.6, 30.1, 30.0, 29.82, 29.79, 29.73, 29.65, 29.64, 29.59, 29.52, 29.50, 29.44, 29.42, 29.1, 29.0, 27.7, 27.40, 27.37, 26.3, 25.8, 25.7, 25.2, 22.72, 22.70, 22.6, 21.1, 20.9, 20.4, 19.4, 18.8, 17.9, 14.3, 14.2, 14.1, 13.6, 11.4, -4.2, -4.9; v_max: 3424, 2923, 2852, 1709, 1464 cm⁻¹; [α]_D^27 +1.46 (CHCl_3, 1.425 µmol) [Found M+Na⁺: 1348.58; C_{88}H_{176}NaO_{4}Si requires: 1348.32].

(2R,3R,19R,37R,38R,E)-3-(tert-Butyldimethylsilyloxy)-2-docosyl-37-hydroxy-19,38-dimethylhexapentacont-20-enoic acid (210) (18.1 mg, 0.0131 mmol), in dichloromethane (1 ml), was added to a stirred suspension of pyridinium chlorochromate (8.47 mg, 0.0393 mmol, 3 mol. equiv.) in dichloromethane (2 ml) at RT. The mixture was stirred for 1 hr, when TLC analysis indicated completion of the reaction. The solvent was evaporated and the resultant residue was purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, (2R,3R,19R,38R,E)-3-(tert-butyldimethylsilyloxy)-2-docosyl-19,38-dimethyl-37-oxohexapentacont-20-enoic acid (211) (16.1 mg, 89 %), which showed δH (500 MHz, CDCl3): 5.33 (1H, dt, J 6.8, 8.5 Hz), 5.24 (1H, dd, J 7.55, 8.2 Hz), 3.85-31 (1H, m), 2.56-2.52 (1H, m), 2.50 (1H, t, J 6.9 Hz), 2.41 (2H, dt, J, 1.9, 7.25 Hz), 2.05-2.00 (1H, m), 1.97 (2H, q, J 6.6 Hz), 1.75-1.68 (2H, m), 1.64-1.21 (135H, br. m including br. s at 1.26), 1.05 (3H, d, J 6.6 Hz), 0.95 (3H, d, J 6.95 Hz), 0.93 (9H, s), 0.89 (6H, t, J 6.6 Hz), 0.15 (3H, s), 0.14 (3H, s); δC (125 MHz, CDCl3): 215.3, 178.0, 136.5, 128.4, 73.7, 50.0, 46.3, 41.2, 37.3, 36.7, 35.8, 33.1, 32.6, 31.9, 29.8, 29.72, 29.69, 29.64, 29.61, 29.58, 29.54, 29.50, 29.48, 29.46, 29.44, 29.37, 29.3, 29.2, 29.2, 27.4, 27.32, 27.27, 25.7, 25.2, 23.7, 22.7, 20.1, 17.9, 16.4, 14.1, -4.2, -4.9; v max: 3419, 2925, 2854, 2360, 2341, 1711, 1464 cm⁻¹; [α]24D = +3.70 (CHCl3, 0.457 μmol)
[Found M+Na⁺: 1346.47; C88H174NaO4Si requires: 1346.31].

A dry polyethylene vial equipped with a rubber septum, was charged with (2R,3R,19R,38R, E)-3-(tert-butyldimethylsilyloxy)-2-docosyl-19,38-dimethyl-37-oxohexapentacont-20-enoic acid (211) (15 mg, 0.01088 mmol) in dry THF (1 ml) under nitrogen at 0 °C. Pyridine (0.1 ml) and hydrogen fluoride-pyridine complex (0.05 ml, 0.03263 mmol, 3 mol. equiv.) were added and the mixture stirred for 18hrs at 43 °C. When TLC analysis indicated completion of the reaction, the mixture was neutralised by slowly pouring the mixture into sat. aq. sodium hydrogen carbonate (3 ml) until no more carbon dioxide was liberated. The product was extracted with petrol/ether (1:1, 3 x10 ml), dried and evaporated to give a white solid. This was purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give a white solid, (2R,3R,19R,38R, E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-oxohexapentacont-20-enoic acid (86) (6 mg, 44 %), which showed δH (500 MHz, CDCl3): 5.32 (1H, td, J 6.65, 15.45 Hz), 5.24 (1H, dd, J 7.55, 15.45 Hz), 2.50 (1H, sext, J 6.6 Hz), 2.47 (1H, m), 2.42 (2H, dt, J 1.55, 6.95 Hz), 2.36 (1H, t, J 7.55 Hz), 1.97 (2H, q, J 6.95 Hz), 1.65-1.17 (139H, br. m, including br. s at 1.26), 1.05 (3H, d, J 6.95 Hz), 0.95 (3H, d, J 6.95 Hz), 0.89 (6H, t, J 6.65 Hz); δC: 215.5, 177.9, 136.5, 128.4, 72.2, 50.6, 46.4, 41.2, 37.3, 36.7, 35.6, 33.1, 32.6, 31.9, 29.8, 29.7, 29.64, 29.59, 29.54, 29.51, 29.48, 29.43, 29.39, 29.3, 29.1, 28.9, 27.4, 27.3, 25.7, 23.7, 22.7, 22.6, 21.0, 19.4, 16.4, 14.1; ν max: 3420, 3019, 2926, 2855, 1521, 1420, 1215 cm⁻¹; [α]D² = +2.90 (CHCl3, 0.471 μmol) [Found M+Na+: 1232.36; C82H160NaO4 requires: 1233.14].
4.5 - Additional Experimental

![Chemical Structure](image)

2,3-Dihydropyran (0.05 ml, 52.0 mg, 0.6185 mmol, 20 mol. equiv., \(d = 0.928\)) and pyridinium-p-toluene sulfonate (4 mg, 0.0155 mmol, 0.5 mol. equiv.) were added to a stirred solution of \((2R,3R,21R,39R,40R,E)\) methyl 3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (205) (31.4 mg, 0.0309 mmol) in dry dichloromethane (0.5 ml) under nitrogen at RT. The mixture was stirred for 1 hr; when TLC indicated the reaction was complete, it was quenched with sat. aq. sodium hydrogen carbonate (3 ml) and extracted with dichloromethane (2 x 15 ml). The combined organic layers were washed with water (5 ml), dried and evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a colourless oil, \((2R,3R,21R,39S,40S,E)\) methyl 3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (30.0 mg, 90 %), which showed \(\delta_{H}\) (500 MHz, CDCl\(_3\)): 5.33 (1H, dt, \(J 6.65, 8.5\) Hz), 5.24 (1H, dd, \(J 7.55, 15.15\) Hz), 5.11-5.07 (1H, m), 4.68-4.61 (1H, m), 3.96-3.89 (1H, m), 3.68 (3H, s), 3.50-3.44 (1H, m), 2.64-2.60 (1H, m), 2.03 (3H, s), 1.97 (2H, q, \(J 6.6\) Hz), 1.86-1.82 (1H, m), 1.59-1.14 (146H, br. m including br. s at 1.26), 0.94 (3H, d, \(J 6.65\) Hz), 0.89 (6H, t, \(J 6.6\) Hz), 0.84 (3H, d, \(J 6.65\) Hz); \(\delta_{C}\) (125 MHz, CDCl\(_3\)): 173.7, 170.3, 136.5, 128.4, 98.5, 81.4, 74.1, 62.8, 51.5, 49.6, 38.3, 37.2, 36.7, 34.5, 33.5, 32.6, 31.9, 31.7, 30.0, 29.9, 29.8, 29.71, 29.65, 29.61, 29.57, 29.52, 29.49, 29.44, 29.42, 29.38, 29.1, 28.1, 27.7, 27.5, 27.4, 27.3, 26.2, 25.0, 22.7, 21.0, 20.9, 18.2, 14.4, 13.6; \(v_{\text{max}}\): 2924, 2853m 2360m 2341m 1464 cm\(^{-1}\); \([\alpha]_{D}^{23} = +1.99\) (CHCl\(_3\), 1.487 \(\mu\)mol) [Found M+Na\(^+\): 1374.21; \(C_{90}H_{174}O_{66}Na\) requires: 1374.32].

Lithium hydroxide monohydrate (23.1 mg, 0.8874 mmol, 30 mol. equiv.) was added to a stirred solution of (2R,3R,21R,39S,40S,E) methyl 3-acetoxy-2-docosyl-39-hydroxy-21,40-dimethyloctapentacont-22-enoate (30 mg, 0.02958 mmol) in THF (4 ml), methanol (0.5 ml) and water (0.5 ml) at RT. The mixture was stirred at 43 °C for 18 hrs; when TLC analysis indicated completion of the reaction, it was cooled to RT and acidified with hydrochloric acid (5%, 2 ml) and the aqueous layer extracted with warm petrol/ethyl acetate (1:1, 3 x 10 ml). The combined organic extracts were dried and evaporated, and purified via column chromatography eluting with petrol/ethyl acetate (5:2) to give a white solid, (2R,3R,19R,37S,38S,E)-2-docosyl-3-hydroxy-19,38-dimethyl-37-(tetrahydro-2H-pyran-2-yloxy)hexapentacont-20-enoic acid (8.1 mg, 28%), which showed δ_H (500 MHz, CDCl$_3$): 5.33 (1H, dt, J 6.65, 8.5 Hz), 5.24 (1H, dd, J 7.55, 15.15 Hz), 4.68-4.62 (1H, m), 3.96-3.89 (1H, m), 3.50-3.44 (1H, m), 2.49-2.42 (1H, m), 1.97 (2H, q, J 7.25 Hz), 1.88-1.82 (1H, m), 1.63-1.21 (149H, br. m including br. s at 1.26), 0.94 (3H, d, J 6.65 Hz), 0.89 (6H, t, J 6.6 Hz), 0.84 (3H, d, J 6.65 Hz); δ_C (125 MHz, CDCl$_3$): 177.5, 145.5, 136.5, 72.2, 67.4, 60.4, 50.5, 37.3, 36.7, 35.6, 34.5, 32.6, 31.9, 30.9, 30.3, 30.1, 30.0, 29.9, 29.7, 29.6, 29.5, 29.42, 29.37, 29.3, 29.12, 29.08, 28.9, 28.1, 27.3, 26.1, 25.8, 22.7, 22.6, 22.3, 21.1, 21.0, 20.4, 19.4, 14.2, 14.11, 14.06; ν_{max}: 3424, 2922, 2852, 2361, 1646 cm$^{-1}$; $\left[\alpha\right]_{D}^{22}=+1.75$ (CHCl$_3$, 0.617 µmol) [Found M+Na$: 1318.18$; C$_{87}$H$_{170}$O$_5$Na requires: 1318.29].

References

31. W.H.O., Justification and design for the undertaking of a large-scale BCG trial in India. *WHO Archives 1963*, TB/Int./50.
43. Sula, L.; Sundaresan, T. K., WHO co-operative studies of a simple culture
technique for the isolation of mycobacteria: comparison of the efficacy of
lyophilized liquid medium with that of Lowenstein-Jensen (L-J) medium.

44. Middlebrook, G.; Reggiardo, Z.; Tigertt, W. D., Automatable radiometric
detection of growth of *Mycobacterium tuberculosis* in selective media. Am.

45. Janin, Y. L., Antituberculosis drugs: Ten years of research. Bioorganic &
Medicinal Chemistry 2007, 15, 2479-2513.

46. Espinal, M. A., The global situation of MDR-TB. *Tuberculosis* 2003, 83, 44-
51.

47. W.H.O., W.H.O. Tuberculosis Programme: framework for effective

48. Forget, E. J.; Menzies, D., Adverse reactions to first-line antituberculosis

50. Raychaudhuri, S.; Rock, K. L., Fully mobilizing host defences: building

52. Flynn, J. L.; Goldstein, M. M.; Triebold, K. J.; Sypek, J.; Wolf, S.; Bloom, B.
R., IL-12 increases resistance of BALB/c mice to *Mycobacterium tuberculosis*

53. Aaron, L.; Saadou, D.; Calatroni, I.; Launay, O.; Mémain, N.; Vincent, V.;
Marchal, G.; Dupont, B.; Bouchaud, O.; Valeyre, D.; Lortholary, O.,

HIV/AIDS Department 2009, 1.2.

94. Yarkoni, E.; Bekierkunst, A., Nonspecific resistance against infection with Salmonella typhi and Salmonella typhimurium induced in mice by cord factor (trehalose-6,6′-dimycolate) and its analogues. *Infect. Immun.* 1976, 14, 1125-1129.

98. Floyer, J. S., A treatise of the asthma. *Divided into four parts printed for Richard Wilkin at St. Pauls' Churchyard, London 1698*.

NHS SIGN 2009.

eosinophil levels as a result of viral infection in asthma exacerbation in

103. Martinez, F. D., Genes, environments, development and asthma: a

Health* 2005, 26, 89-113.

106. Ober, C.; Hoffjan, S., Asthma genetics 2006: the long and winding road to

107. Chu, E. K.; Drazen, J. M., Asthma: One Hundred Years of Treatment and

108. Katz, Y.; Lebas, F. X.; Medley, H. V.; Robson, R., Fluticasone Propionate 50
µg BID Versus 100 µg BID in the Treatment of Children with Presistent

international encyclopedia of modern medical science by leading authorities
of Europe and America; Stedman, T.L.; New York: William Wood and Co.*
1896, 6, 585-617.

112. Ordway, D.; Henao-Tamayo, M.; Orme, I. M.; Gonzalez-Juarrero, M.,
Foamy macrophages within lung granulomas of mice infected with
Mycobacterium tuberculosis express molecules characteristic of dendritic
cells and antiapoptotic markers of the TNF receptor-associated factor family.
J. Immunol. 2005, 175, 3873-3881.

113. Korf, J.; Stolz, A.; Verschoor, J.; de Baetselier, P.; Grooten, J., The
Mycobacterium tuberculosis cell wall component mycolic acid elicits

162. Yuan, Y.; Barry III, C. E., A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. PNAS 1996, 93, (23), 12828-12833.

206. Thanks to Y. Lemmer and M. Deysel for providing this information. *University of Pretoria, South Africa.*

208. Thanks to S. V. Beken and J. Grooten for providing this information. *Ghent University, Belgium.*

Appendices

Appendix 1: (8S,9S)-8-Methoxy-9-methylheptacosan-1-ol (94)182

\[
\begin{align*}
\text{CH}_3(\text{CH}_2)_{17} & \quad \text{OMe} \\
(\text{CH}_2)_{7}\text{OH} &
\end{align*}
\]

\(p\)-Toluene sulfonic acid monohydrate (0.56 g, 2.9 mmol, 0.25 mol. equiv.) was added to a stirred solution of 2-((8S,9S)-8-methoxy-9-methylheptacosyloxy) tetrahydropyran (93) (6.15 g, 11.7 mmol)189 in THF (20 ml), methanol (70 ml) and water (1 ml) at RT. The mixture was refluxed for 30 mins; when TLC showed no starting material was left, sat. aq. sodium hydrogen carbonate (50 ml) and petrol / ether (1:1, 150 ml) was added. The aqueous layer was re-extracted with petrol / ether (1:1, 2 x 50 ml). The combined organic layers were washed with brine (100 ml), dried and evaporated to give a residue, which was purified via column chromatography on silica gel eluting with petrol / ether (5:2) to give (8S,9S)-8-methoxy-9-methylheptacosan-1-ol (94) (3.97 g, 77\%) as a colourless oil, which showed \(\delta\)\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), \(\delta\)\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), \(v\)\textsubscript{max} identical to the literature, \([\alpha]^{19}\textsubscript{D} = -9.52\) (CHCl\textsubscript{3}, 0.681 \(\mu\)mol); lit. value \([\alpha]^{22}\textsubscript{D} = -10.74\) \(c 1.20,\) CHCl\textsubscript{3}182

Appendix 2: (8S,9S)-8- Methoxy-9-methylheptacosanal (95)182

\[
\begin{align*}
\text{CH}_3(\text{CH}_2)_{17} & \quad \text{OMe} \\
(\text{CH}_2)_{6}\text{CHO} &
\end{align*}
\]

(8S,9S)-8-Methoxy-9-methylheptacosan-1-ol (94) (3.81 g, 8.66 mmol) in dichloromethane (30 ml) was added to a stirred suspension of pyridinium chlorochromate (4.67 g, 21.65 mmol, 2.5 mol. equiv.) in dichloromethane (200 ml) at RT. The mixture was stirred for 2 hrs; when TLC analysis indicated completion of
the reaction the mixture was poured into ether (200 ml). The mixture was filtered through a pad of silica gel and washed with ether (100 ml) and the filtrate evaporated. The crude product was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, (8S,9S)-8-methoxy-9-methylheptacosanal (95) (3.39 g, 89 %) which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature, $[\alpha]_{D}^{19} = -11.12$ (CHCl$_3$, 1.421 µmol); lit. value $[\alpha]_{D}^{22} = -11.3$ (c 1.50, CHCl$_3$).182

Appendix 3: 8-Bromooctan-1-ol (102)182

$$\text{Br(CH}_2\text{)}_8\text{OH}$$

1,8-Octanediol (101) (25.00 g, 171.0 mmol) was dissolved in toluene (100 ml) and aqueous hydrobromic acid (30 ml, 44.7 g, 552.4 mmol, d = 1.49) was added and the mixture was refluxed for 18 hrs. When TLC analysis indicated completion of the reaction, the mixture was extracted with water (100 ml) and washed with sat. aq. sodium hydrogen carbonate (3 x 50 ml). The combined organic layers were dried and evaporated to give a crude product, which was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a yellow oil, 8-bromooctan-1-ol (102) (29.02 g, 81 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature.182

Appendix 4: 2,2-Dimethyl-propionic acid 8-bromo-octyl ester (103)182

$$\text{Br(CH}_2\text{)}_8\text{O}$$

A solution of trimethyl acetylchloride (20.50 ml, 20.09 g, 166.6 mmol, d = 0.979, 1.2 mol. equiv.) in dichloromethane (150 ml) was added to a stirred solution of 8-bromooctan-1-ol (102) (29.02 g, 138.9 mmol) in dichloromethane (200 ml), pyridine (22.5 ml, 21.97 g, 277.7 mmol, d = 0.978, 2 mol. equiv.) and 4-
dimethylaminopyridine (0.679 g, 5.55 mmol, 0.04 mol. equiv.) over 15 mins at 5 °C. The mixture was then stirred at RT for 72 hrs; when TLC analysis indicated completion of the reaction, dil. hydrochloric acid (250 ml) was added and the organic layer extracted and washed with further dil. hydrochloric acid (100 ml) and brine (2 x 300 ml). The combined organic extracts were dried and evaporated to give a crude product, which was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a colourless oil, 2,2-dimethyl-propionic acid 8-bromo-octyl ester (103) (34.62 g, 85 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature.182

Appendix 5: 2,2-Dimethyl-propionic acid 8-(1H-phenyl-1H-tetrazole-5-yl sulfanyl)-octyl ester (104)182

![Chemical structure](https://example.com/structure.png)

2,2-Dimethyl-propionic acid 8-bromo-octyl ester (34.62 g, 118.2 mmol) was added with vigorous stirring to 1-phenyl-1H-tetrazole-5-thiol (103) (21.06 g, 118.2 mmol) and anhydrous potassium carbonate (32.7 g, 236.3 mmol, 2 mol. equiv.) in acetone (300 ml). The reaction was refluxed for 18 hrs; when TLC analysis indicated completion of the reaction, the inorganic solids were filtered off and washed with acetone. The organic filtrate was evaporated and extracted with dichloromethane (200 ml) and water (150 ml). The aqueous layer was re-extracted with further dichloromethane (3 x 100 ml) and the combined organic layers were dried and evaporated. The crude yellow oil was purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, 2,2-dimethyl-propionic acid 8-(1H-phenyl-1H-tetrazole-5-yl sulfanyl)-octyl ester (104) (34.34 g, 74 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature.182
Appendix 6: 2,2-Dimethyl-propionic acid 8-(1H-phenyl-1H-tetrazole-5-yl sulfonyl)-octyl ester (96)¹⁸²

\[
\begin{align*}
\text{Ph} & \quad \text{N} \quad \text{N} \\
\text{S} & \quad \text{O} \\
\text{CH}_2\text{CH}_2\text{O} & \quad \text{CO} \\
\end{align*}
\]

A solution of ammonium molybdate (VI) tetrahydrate (54.4 g, 44.0 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (85 ml, 35 % w/w) was added and to a stirred solution of 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-yl sulfanyl)-octyl ester (104) (34.34 g, 88.0 mmol) in THF (300 ml) and IMS (600 ml) at 12 °C and the mixture stirred at 15-20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (21.7 g, 17.6 mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (45 ml, 35 % w/w) was added and the reaction mixture stirred for 72 hrs. The mixture was then poured into water (3 l) and extracted with dichloromethane (3 x 250 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (4:1) to give a colourless oil, 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) (35.68 g, 96 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature.¹⁸²

Appendix 7: 2,2-Dimethyl-propionic acid (16S,17S)-16-methoxy-17-methyl-pentatriacontyl ester (106)¹⁸²

(8S,9S)-8-Methoxy-9-methylheptacosanal (95) (3.39 g, 7.74 mmol) was dissolved in dry THF (30 ml) and added to a stirred solution of 2,2-dimethyl-propionic acid 8-(1-phenyl-1H-tetrazole-5-sulfonyl)-octyl ester (96) (3.92 g, 9.29 mmol) in dry THF (40
ml) at RT under nitrogen. The mixture was cooled to -10 °C and lithium bis(trimethyl silyl) amide (11.39 ml, 12.07 mmol, 1.06 M) was added dropwise between -12 °C and -5 °C. The solution was stirred for 18 hrs; when TLC analysis indicated completion of the reaction, dichloromethane (100 ml) and sat. aq. ammonium chloride (50 ml) were added and the aqueous layer re-extracted with dichloromethane (2 x 200 ml). The combined organic extracts were dried and evaporated to give a crude product, which was purified via column chromatography eluting with petrol/ether (20:1) to give a colourless oil, (E/Z)-2,2-dimethyl-propionic acid (16S,17S)-16-methoxy-17-methyl-pentatriacont-8-enyl ester (105) (4.21 g, 86 %). Palladium on charcoal (0.5 g, 10 %) was added to a stirred solution of (E/Z)-2,2-dimethyl-propionic acid (16S,17S)-16-methoxy-17-methyl-pentatriacont-8-enyl ester (105) (4.09 g, 6.44 mmol) in IMS (150 ml). The mixture was stirred at atmospheric pressure and, when no more hydrogen was being absorbed it was filtered through a pad of celite and washed with IMS (100 ml). The filtrate was evaporated to give a colourless oil, 2,2-dimethyl-propionic acid (16S,17S)-16-methoxy-17-methyl-pentatriacontyl ester (106) (4.10 g, 99.9%), which showed δH (500 MHz, CDCl3), δC (125 MHz, CDCl3), νmax identical to the literature, [α]D = -6.9 (CHCl3, 1.456 μmol); lit. value [α]D = -6.5 (c 1.503, CHCl3).

Appendix 8: (16S,17S)-1-Bromo-16-methoxy-17-methyl-pentatriacontane (108)

N-Bromosuccinimide (1.16 g, 6.56 mmol, 1.3 mol. equiv.) was added portionwise over 15 mins to a stirred solution of (16S,17S)-16-methoxy-17-methyl-pentatriacontan-1-ol (107) (2.64 g, 5.05 mmol) in dichloromethane (40 ml) at 0 °C. The mixture was stirred at RT for 1 hr; when TLC analysis indicated complete reaction, it was quenched with sat. aq. sodium meta-bisulfite (50 ml). The aqueous layer was re-extracted with dichloromethane (2 x 30 ml) and the combined organic
extracts washed with water (100 ml), dried and evaporated to give a residue. This residue was treated with petrol/ether (1:1, 100 ml), refluxed for 30 mins and then filtered and washed with petrol/ether (1:1, 50 ml). The filtrate was evaporated and the resultant residue purified via column chromatography eluting with petrol/ether (50:1) to give a white solid, (16S,17S)-1-bromo-16-methoxy-17-methylpentatriacontane (108) (2.60 g, 84%), which showed δ_H (500 MHz, CDCl₃), δ_C (125 MHz, CDCl₃), ν max identical to the literature, [α]_D^21 = -7.54 (CHCl₃, 1.087 μmol); lit. value [α]_D^22 = -7.35 (c 1.16, CHCl₃).182

Appendix 9: 5-((16S,17S)-16-Methoxy-17-methylpentatriacontyl-1-sulfanyl)-1-phenyl-1H-tetrazole (109)182

(16S,17S)-1-Bromo-16-methoxy-17-methylpentatriacontane (108) (2.60 g, 4.23 mmol) was added to a stirred solution of 1-phenyl-1H-tetrazole-5-thiol (0.83 g, 4.65 mmol, 1.1 mol. equiv.) and anhydrous potassium carbonate (1.75 g, 12.70 mmol, 3 mol. equiv.) in acetone (60 ml) at RT. The mixture was stirred at RT for 18 hrs, the solvent was evaporated and the residue was diluted with petrol/ether (1:1, 100 ml) and water (75 ml). The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 50 ml). The combined organic extracts were dried and evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, 5-((16S,17S)-16-methoxy-17-methylpentatriacontyl-1-sulfanyl)-1-phenyl-1H-tetrazole (109) (2.80 g, 93%), which showed δ_H (500 MHz, CDCl₃), δ_C (125 MHz, CDCl₃), ν max identical to the literature, [α]_D^22 = -6.51 (CHCl₃, 0.981 μmol); lit. value [α]_D^22 = -6.5 (c 1.32, CHCl₃).182
Appendix 10: 5-(((16S,17S)-16-Methoxy-17-methylpentatriacontan-1-sulfonyl)-1-phenyl-1H-tetrazole (91)182

\[
\text{CH}_3(\text{CH}_2)_{17} \quad \text{N}-. -\text{ý\'}
\]

To a stirred solution of 5-(((16S,17S)-16-methoxy-17-methylpentatriacontyl-1-sulfanyl)-1-phenyl-1H-tetrazole (109) (2.80 g, 3.93 mmol) in a mixture of IMS (70 ml) and THF (30 ml), a solution of ammonium molybdate (VI) tetrahydrate (4.86 g, 3.93 mmol) in -10 °C hydrogen peroxide (10 ml, 35 % w/w) was added at 5 °C. The resulting yellow solution was stirred for 2 hrs at RT, then further ammonium molybdate (VI) tetrahydrate (2.43 g, 1.96 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (5 ml, 35 % w/w) was added and the reaction mixture was stirred for 18 hrs. The reaction mixture was poured into water (300 ml) and extracted with dichloromethane (3 x 60 ml). The combined organic extracts were washed with water (100 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (10:1) to give a white solid, 5-(((16S,17S)-16-methoxy-17-methylpentatriacontan-1-sulfonyl)-1-phenyl-1H-tetrazole (91) (2.56 g, 87 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature, [α]\textsubscript{23}D = -6.32 (CHCl\textsubscript{3}, 1.311 μmol); lit. value [α]\textsubscript{22}D = -6.19 (c 1.39, CHCl\textsubscript{3})182

Appendix 11: (cis-2-Hydroxymethyl-cyclopropyl)-methanol (111)193

\[
\text{HO} \quad \text{OH}
\]

Lithium aluminium hydride (18.68 g, 492.2 mmol, 3 mol. equiv.) was added portionwise to stirred THF (350 ml, HPLC grade) at -20 °C, when vigorous evolution of hydrogen was observed. A solution of cis-cyclopropane-1,2-
dicarboxylic acid dimethyl ester (110) (25.92 g, 164.0 mmol) in THF (50 ml) was added dropwise to the above suspension at -20 °C and the reaction mixture was refluxed for 2 hrs. When TLC analysis indicated completion of the reaction, a freshly prepared solution of sat. aq. sodium sulfate (40 ml) was added at -20 °C. Formation of a white precipitate was observed and the reaction mixture was stirred at RT for 2 hrs. The mixture was filtered through a bed of silica gel and the solvent evaporated. The resulting solution was taken up in dichloromethane (100 ml), washed with water (25 ml) and dried. The solvent was evaporated and the crude product was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a colourless oil, (cis-2-hydroxymethyl-cyclopropyl)-methanol (111) (12.86 g, 80 %), which showed δH (500 MHz, CDCl3), δC (125 MHz, CDCl3), νmax identical to the literature.193

Appendix 12: Butyric acid cis-2-butyryloxymethyl-cyclopropylmethyl ester (112)193

![Diagram](image)

Butyric anhydride (40.58 ml, 39.28 g, 248.3 mmol, 2.2 mol. equiv., d = 0.968) was added to (cis-2-hydroxymethyl-cyclopropyl)-methanol (111) (11.06 g, 112.9 mmol) and the mixture was refluxed for 18 hrs at 120 °C. The reaction mixture was then cooled to RT and dichloromethane (100 ml) and sodium hydroxide solution (100 ml, 7 %) was added. The aqueous layer was re-extracted with dichloromethane (2 x 25 ml) and the combined organic layers were washed with sat. aq. sodium hydrogen carbonate (50 ml). The solution was dried and the solvent evaporated and the excess butyric anhydride removed via flash distillation at 0.1 - 0.2 mmHg. The crude product was purified via column chromatography eluting with petrol/ether (5:1, then 1:1) to give a colourless oil, butyric acid cis-2-butyryloxymethyl-cyclopropylmethyl ester (112) (22.37 g, 82 %), which showed δH (500 MHz, CDCl3), δC (125 MHz, CDCl3), νmax identical to the literature.193
Appendix 13: Butyric acid (1R,2S)-2-hydroxymethyl-cyclopropyl methyl ester (113)193

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{O} \quad \text{C} & \quad \text{H}
\end{align*}
\]

Lipase (1 g, PPL, type II, crude, Sigma cat. no. L3126) was added to a flask fitted with a pH electrode, which has been accurately calibrated, containing a gently stirred solution of ethylene glycol (41 ml) and distilled water (161 ml) at 3 °C under nitrogen. At pH 6.8 butyric acid cis-2-butyryloxymethyl-cyclopropyl methyl ester (112) (10.5 g, 43.4 mmol) was added. The pH lowered, indicating that hydrolysis had begun, due to the formation for butyric acid. The pH was returned to 6.5 by the careful addition of aq. sodium hydroxide (1 M), maintaining a temperature of 3 °C throughout the process. The reaction mixture was stirred for 1 hr followed by addition of further lipase (0.75 g), and aq. sodium hydroxide (1 M) was added during the reaction to maintain a pH of 6.5. After 5 hrs 30 mins the pH stopped decreasing indicating completion of the reaction; a total of 37 ml of aq. sodium hydroxide (1 M) was required. The mixture was filtered through a bed of celite and washed with water (25 ml), followed by ether (50 ml). The pH was raised to 8.3 by the addition of sat. aq. sodium hydrogen carbonate and the mixture neutralised by the addition of sat. aq. ammonium chloride, pH 7.2. The mixture was extracted with ether (2 x 300 ml) and the combined organic layers were dried and the solvent evaporated. The crude product was purified via column chromatography eluting with petrol/ether (1:1, then 1:3) to give a colourless oil, butyric acid (1R,2S)-2-hydroxymethyl-cyclopropyl methyl ester (113) (6.05 g, 82 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature, [α]22_D = + 17.4 (CHCl\textsubscript{3}, 1.021 μmol); lit. value [α]22_D = + 18.2 (c 1.58, CHCl\textsubscript{3}).193
Appendix 14: Butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazole-5-sulfonylmethyl)-cyclopropylmethyl ester (116)

A solution of ammonium molybdate (VI) tetrahydrate (18.7 g, 15.1 mmol) in -10 °C hydrogen peroxide (30 ml, 35 % w/w) was added to a stirred solution of butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazole-5-ylsulfanyl methyl)-cyclopropylmethyl ester (115) (10.03 g, 30.3 mmol) in THF (100 ml) and IMS (200 ml) at 12 °C and the solution stirred at 15 - 20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (7.5 g, 6.1 mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (15 ml, 35 % w/w) was added and the reaction stirred for 18 hrs. The reaction mixture was then poured into water (1 l) and extracted with dichloromethane (3 x 100 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (4:1, then 1:1) to give a yellow oil, butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazole-5-sulfonylmethyl)-cyclopropylmethyl ester (116) (10.68 g, 97 %), which showed δ_H (500 MHz, CDCl_3), δ_C (125 MHz, CDCl_3), v_max identical to the literature, [α]_21D^21 = +47.6 (CHCl_3, 1.287 μmol); lit. value [α]_22D^22 = +52.7 (c 1.45, CHCl_3).

Appendix 15: 6-Bromohexan-1-ol (121)

Br(CH_2)_6OH

1,6-Hexanediol (120) (25.00 g, 211.5 mmol) was dissolved in toluene (100 ml) and aqueous hydrobromic acid (30 ml, 44.7 g, 552.4 mmol, d = 1.49) was added and the mixture was refluxed for 18 hrs. When TLC analysis indicated completion of the reaction, the mixture was extracted with water (100 ml) and washed with sat. aq. sodium hydrogen carbonate (3 x 50 ml). The organic layer was dried and evaporated.
to give a crude product, which was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a yellow oil, 6-bromohexan-1-ol (121) (21.64 g, 57 %), which showed δ_H (500 MHz, CDCl_3), δ_C (125 MHz, CDCl_3), ν_max identical to the literature. 182

Appendix 16: 6-Bromohexanal (117) 182

\[
\text{Br(CH}_2\text{)_5CHO}
\]

6-Bromohexan-1-ol (121) (21.64 g, 119.6 mmol) in dichloromethane (50 ml) was added to a stirred suspension of pyridinium chlorochromate (51.5 g, 239.1 mmol, 2 mol. equiv.) in dichloromethane (500 ml) at RT. The mixture was stirred vigorously for 2 hrs; when TLC analysis indicated completion of the reaction, the mixture was filtered over a silica gel/celite pad and washed well with ether (200 ml). The filtrate was evaporated to give a residue which was purified via column chromatography eluting with petrol/ether (1:1) to give a colourless oil, 6-bromohexanal (117) (14.62 g, 68 %), which showed δ_H (500 MHz, CDCl_3), δ_C (125 MHz, CDCl_3), ν_max identical to the literature. 182

Appendix 17: Butyric acid (1R,2S)-2-(7-bromoheptyl)cyclopropylmethyl ester (118) 182

\[
\text{O} \left(\begin{array}{c}
\text{CH}_2 \\
\text{CH}_2 \\
\text{CH}_2 \\
\end{array}\right)\text{Br}
\]

A solution of 6-bromohexanal (117) (4.40 g, 24.5 mmol) in dry THF (50 ml) was added to a stirred solution of butyric acid (1R,2S)-2-(1-phenyl-1H-tetrazole-5-sulfonylmethyl)-cyclopropylmethyl ester (116) (10.68 g, 29.4 mmol) in dry THF (50 ml) at RT under nitrogen. The mixture was cooled to -10 °C and lithium bis(trimethylsilyl)amide (36.1 ml, 38.2 mmol, 1.06 M) was added dropwise between -12 °C and -5 °C. The solution was stirred for 2 hrs; when TLC analysis indicated
completion of the reaction, dichloromethane (200 ml) and sat. aq. ammonium chloride (100 ml) was added. The aqueous layer was re-extracted with further dichloromethane (2 x 200 ml) and the combined organic extracts were dried and evaporated to give a crude yellow oil. This was purified via column chromatography eluting with petrol/ether (20:1) to give a colourless oil, (1R,2S)-2-((E/Z)-7-bromohept-1-enyl)cyclopropylmethyl ester (122) (6.49 g, 84 %). 2,4,6-Triisopropylbenzenesulfonyl hydrazide (8.70 g, 29.2 mmol, 2.75 mol. equiv.) was added to a stirred solution of (1R,2S)-2-((E/Z)-7-bromohept-1-enyl)cyclopropylmethyl ester (122) (3.37 g, 10.6 mmol) in THF (75 ml) and the mixture was stirred for 18 hrs at 50 °C. Further 2,4,6-triisopropyl-benzenesulfonyl hydrazide (3.17 g, 10.6 mmol) was added and the mixture stirred for 24hrs at 50 °C. The reaction mixture was then diluted with petrol/ether (1:1, 200 ml) and aq. sodium hydroxide (2 %, 100 ml). The aqueous layer was re-extracted with petrol/ether (1:1, 2 x 50 ml) and the combined organic extracts were washed with water (100 ml), dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (10:1) to give a colourless oil, butyric acid (1R,2S)-2-(7-bromoheptyl)cyclopropylmethyl ester (118) (2.00 g, 59 %), which showed δH (500 MHz, CDCl3), δC (125 MHz, CDCl3), v max identical to the literature, [α]21D = +9.76 (CHCl3, 1.073 μmol); lit. value [α]24D = + 10.3 (c 1.50, CHCl3).

Appendix 18: (1R,2S)-2-(7-Bromoheptyl)cyclopropyl methanol (123)

Anhydrous potassium carbonate (2.30 g, 16.6 mmol, 2.65 mol. equiv) was added to a stirred solution of butyric acid (1R,2S)-2-(7-bromoheptyl)cyclopropylmethyl ester (117) (2.00 g, 6.27 mmol) in methanol (15 ml) and THF (20 ml) at RT. The reaction mixture was stirred for 18 hrs at 45 °C, when TLC analysis indicated completion of the reaction. The reaction mixture was diluted with water (100 ml) and ether (50 ml). The aqueous layer was re-extracted with ether (2 x 25 ml). The combined organic extracts were washed with brine (50 ml), dried and evaporated to give a residue. The crude product was purified via column chromatography eluting with petrol/ether.
(5:1) to give a yellow oil, \((1R,2S)-2-(7\text{-bromoheptyl})\text{cyclopropyl methanol} \) \((123)\) (1.44 g, 92 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)), \(\delta_C\) (125 MHz, CDCl\(_3\)), \(\nu_{\text{max}}\) identical to the literature, \([\alpha]^{19}_D = +13.1\) (CHCl\(_3\), 1.232 µmol); lit. value \([\alpha]^{22}_D = +12.87\) (c 1.65, CHCl\(_3\)).\(^{182}\)

Appendix 19: \((1R,2S)-2-(7\text{-Bromoheptyl})\text{cyclopropanecarbaldehyde} \) \((92)\)\(^{182}\)

\[
\begin{align*}
\text{O} & \text{C} \\
\text{(CH}_2\text{)}_7\text{Br}
\end{align*}
\]

\((1R,2S)-2-(7\text{-Bromoheptyl})\text{cyclopropylmethanol} \) \((123)\) (1.44 g, 5.80 mmol) in dichloromethane (10 ml) was added to a stirred suspension of pyridinium chlorochromate (3.13 g, 14.51 mmol, 2.5 mol. equiv.) in dichloromethane (40 ml) at RT. The mixture was stirred for 3 hrs; when TLC analysis indicated completion of the reaction, the mixture was poured into ether (200 ml), filtered through a pad of silica gel and washed well with ether (100 ml). The filtrate was evaporated and the resultant residue was purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, \((1R,2S)-2-(7\text{-bromoheptyl})\text{cyclopropanecarbaldehyde} \) \((92)\) (0.73 g, 51 %), which showed \(\delta_H\) (500 MHz, CDCl\(_3\)), \(\delta_C\) (125 MHz, CDCl\(_3\)), \(\nu_{\text{max}}\) identical to the literature, \([\alpha]^{20}_D = +8.6\) (CHCl\(_3\), 1.134 µmol); lit. value \([\alpha]^{22}_D = +8.19\) (c 1.28, CHCl\(_3\)).\(^{182}\)

Appendix 20: \((R)-2-[(R)-1-(\text{tert-Butyldimethylsilanyloxy})-3\text{-hydroxypropyl}]\text{-hexacosanoic acid methyl ester} \) \((127)\)\(^{183}\)

\[
\begin{align*}
\text{O} & \text{SiMe}_2^\text{Bu} \text{O} \\
\text{HO} & \text{OMe} \\
\text{(CH}_2\text{)}_{23}\text{CH}_3
\end{align*}
\]

Palladium on charcoal (0.5 g, 10 %) was added to a stirred solution of \((E/Z)-(R)-2-[(R)-3\text{-benzyloxy}-1-(\text{tert-butyl-dimethyl-silanyloxy-propyl})\text{-hexacos-4-enoic acid}\)
methyl ester (126) (2.57 g, 3.74 mmol) in ethanol (25 ml). The mixture was hydrogenated at atmospheric pressure for 3 days and then the catalyst was removed via suction filtration through a bed of celite, washed with ethyl acetate (3 x 10 ml) and the solvent was evaporated. The product was purified via column chromatography eluting with petrol/ethyl acetate (5:1) to give (R)-2-[(R)-1-(tert-butylidimethylsilanyloxy)-3-hydroxypropyl]-hexacosanoic acid methyl ester (127) (2.00 g, 89 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature, $[\alpha]^{22}_{D}$ = -8.3 (c 0.4, C$_6$H$_6$).183

Appendix 21: (R)-2-[(R)-1-(tert-Butyldimethylsilanyloxy)-3-oxo-propyl]-hexacosanoic acid methyl ester (128)183

(R)-2-[(R)-1-(tert-Butyldimethylsilanyloxy)-3-hydroxypropyl]-hexacosanoic acid methyl ester (127) (2.00 g, 3.26 mmol) in dichloromethane (10 ml) was added to a stirred suspension of pyridinium chlorochromate (1.76 g, 8.16 mmol, 2.5 mol. equiv.) in dichloromethane (70 ml). The resultant mixture was stirred at RT for 2 hrs; when TLC analysis indicated completion of the reaction, the mixture was diluted with ether (100 ml) and then filtered on a bed of silica gel. The filtrate was evaporated and the crude product purified via column chromatography eluting with petrol/ether (5:2) to give a white solid, (R)-2-[(R)-1-(tert-butylidimethylsilanyloxy)-3-oxo-propyl]-hexacosanoic acid methyl ester (128) (1.07 g, 54 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature, $[\alpha]^{28}_{D}$ = -4.42 (CHCl$_3$, 1.290 μmol); lit. value $[\alpha]^{28}_{D}$ = -5.0 (c 1.23, CHCl$_3$).183
Appendix 22: (1S,2R)-trans-2-((S)-4-(tert-Butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (144)180,193

\begin{center}
\begin{tikzpicture}
\node at (0,0) {Ph};
\node at (1.5,0) {Ph};
\node at (0.75,-1.5) {SiO};
\node at (1.5,-1.5) {Ph};
\node at (1.875,0) {C};
\node at (1.875,-1.5) {C};
\node at (2.25,-0.75) {O};
\end{tikzpicture}
\end{center}

Sodium methoxide (1.45 g, 26.82 mmol, 1.1 mol. equiv.) was added to a stirred solution of (1R,2R)-cis-2-((S)-4-(tert-butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (145) (8.93 g, 24.39 mmol) in methanol (300 ml) and the mixture refluxed for 56 hrs. The mixture was cooled to RT, quenched with sat. aq. ammonium chloride (250 ml) and extracted with ether (3 x 100 ml). The combined organic layers were dried and evaporated to give a thick oil. This was purified via column chromatography eluting with petrol/ether (20:1) to give (1S,2R)-trans-2-((S)-4-(tert-butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (144) (4.90 g, 55 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{\max} identical to the literature, $[\alpha]^{22}_D = +21.5$ (CHCl$_3$, 1.544 μmol); lit. value $[\alpha]^{22}_D = +22.9$ (c 1.28, CHCl$_3$)180

A second fraction was also obtained eluting with petrol/ether (5:1), (1S,2R)-trans-2-((S)-3-hydroxy-1-methyl-propyl)cyclopropanecarbaldehyde (152) (0.93 g, 30 %), which showed δ_H (500 MHz, CDCl$_3$): 8.99 (1H, d, J 9.75 Hz), 3.76-3.66 (2H, m), 2.20 (1H, br.s), 1.80-1.63 (1H, m), 1.59-1.53 (1H, m), 1.36-1.30 (1H, m), 1.29-1.25 (1H, m), 1.03-0.95 (4H, m); δ_C (125 MHz, CDCl$_3$): 200.9, 60.5, 39.7, 33.2, 30.1, 29.1, 19.5, 13.2; ν_{\max}: 3427 cm$^{-1}$.

Appendix 23: (1S,2R)-trans-2-((S)-4-(tert-Butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (144)180

![Chemical Structure](image)

Triethylamine (2.03 ml, 14.56 mmol, 1.47 g, 2 mol. equiv., d=0.7255) was added to a stirred solution of (1S,2R)-trans-2-((S)-3-hydroxy-1-methyl-propyl)cyclopropanecarbaldehyde (152) (0.93 g, 7.28 mmol) in dry dichloromethane (10 ml). After 10 mins, tert-butyldiphenylsilylchloride (2.43 ml, 9.46 mmol, 1.3 mol. equiv., 2.60 g, d=1.072) in dry dichloromethane (5 ml) was added, followed by addition of DMAP (0.05 g). The reaction mixture was stirred for 2 hrs; when TLC showed completion of the reaction, it was quenched with water (20 ml), extracted with dichloromethane (3 x 25 ml), the extract washed with brine (50 ml), dried and evaporated. The resultant oil was purified via column chromatography eluting with petrol/ether (5:1) to give (1S,2R)-trans-2-((S)-4-(tert-butyldiphenylsilyloxy)butan-2-yl)cyclopropanecarbaldehyde (144) (2.3 g, 86 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature, [α]\textsubscript{22}D = +21.5 (CHCl\textsubscript{3}, 1.544 μmol); lit. value [α]\textsubscript{22}D = +22.9 (c 1.28, CHCl\textsubscript{3}).180

Appendix 24: 9-Bromononan-1-ol183

\[
\text{Br(CH}_2)_9\text{OH}
\]

1,9-Nonanediol (25.00 g, 156.0 mmol) was dissolved in toluene (100 ml) and aqueous hydrobromic acid (30 ml, 44.7 g, 552.4 mmol, d = 1.49) was added and the mixture was refluxed for 18 hrs. When TLC analysis indicated completion of the reaction, the mixture was extracted with water (100 ml) and washed with sat. aq. sodium hydrogen carbonate (3 x 50 ml). The combined organic layers were dried and evaporated to give a crude product which was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a yellow oil, 8-bromooctan-1-ol
(19.0 g, 55 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature.183

Appendix 25: 9-Bromononyl pivalate183

A solution of trimethyl acetylchloride (9.15 ml, 8.96 g, 74.3 mmol, d = 0.979, 1.2 mol. equiv.) in dichloromethane (30 ml) was added to a stirred solution of 9-bromonan-1-ol (19.0 g, 61.9 mmol) in dichloromethane (100 ml), pyridine (10.0 ml, 9.79 g, 123.8 mmol, d = 0.978, 2 mol. equiv.) and 4-dimethylaminopyridine (0.302 g, 2.48 mmol, 0.04 mol. equiv.) over 15 mins at 5 °C. The mixture was then stirred at RT for 18 hrs, when TLC analysis indicated completion of the reaction. Dil. hydrochloric acid (100 ml) was added and the organic layer extracted and washed with further dil. hydrochloric acid (70 ml) and brine (2 x 150 ml). The combined organic extracts were dried and evaporated to give a crude product, which was purified via column chromatography eluting with petrol/ether (20:1, then 1:1) to give a colourless oil, 9-bromononyl pivalate (23.48 g, 90 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature.183

Appendix 26: 9-(1-Phenyl-1H-tetrazol-5-ylthio)nonyl pivalate183

9-Bromononyl pivalate (23.48 g, 76.5 mmol) was added with vigorous stirring to 1-phenyl-1H-tetrazole-5-thiol (13.60 g, 76.5 mmol) and anhydrous potassium carbonate (21.10 g, 153.0 mmol, 2 mol. equiv.) in acetone (200 ml). The reaction
was refluxed for 18 hrs; when TLC analysis indicated completion of the reaction, the inorganic solids were filtered off and washed with acetone (100 ml). The organic filtrate was evaporated and extracted with dichloromethane (150 ml) and water (300 ml). The aqueous layer was re-extracted with further dichloromethane (3 x 100 ml) and the combined organic layers were dried and evaporated. The crude yellow oil was purified via column chromatography eluting with petrol/ether (5:2) to give a colourless oil, 9-(1-phenyl-1H-tetrazol-5-ylthio)nonyl pivalate (29.43 g, 96 %), which showed δ_H (500 MHz, CDCl_3), δ_C (125 MHz, CDCl_3), ν max identical to the literature.183

Appendix 27: 9-(1-Phenyl-1H-tetrazol-5-ylsulfonyl)nonyl pivalate (172)183

A solution of ammonium molybdate (VI) tetrahydrate (45.0 g, 36.4 mmol, 0.5 mol. equiv.) in -10 °C hydrogen peroxide (90 ml, 35 % w/w) was added to a stirred solution of 9-(1-phenyl-1H-tetrazol-5-ylthio)nonyl pivalate (29.43 g, 72.8 mmol) in THF (250 ml) and IMS (500 ml) at 12 °C and the mixture stirred at 15-20 °C for 2 hrs. A further solution of ammonium molybdate (VI) tetrahydrate (18.0 g, 14.6 mmol, 0.2 mol. equiv.) in -10 °C hydrogen peroxide (37.5 ml, 35 % w/w) was added and the reaction mixture stirred for 18 hrs. The mixture was then poured into water (3 l) and extracted with dichloromethane (3 x 250 ml) and the extract dried and evaporated. The crude product was purified via column chromatography eluting with petrol/ether (4:1) to give a colourless oil, 9-(1-phenyl-1H-tetrazol-5-ylsulfonyl)nonyl pivalate (172) (28.38 g, 89 %), which showed δ_H (500 MHz, CDCl_3), δ_C (125 MHz, CDCl_3), ν max identical to the literature.183
Appendix 28: 1,2:5,6-O-Isopropylidene-D-mannitol (175)210

Zinc chloride (161.59 g, 1.19 mmol, 2.7 mol. equiv.) was dissolved in HPLC grade acetone (750 ml) and D-mannitol (60) (80 g, 0.44 mmol) was added with vigorous stirring at RT. The reaction mixture was stirred at RT for 18 hrs and then K$_2$CO$_3$ (100 g) in water (100 ml). The solid inorganics were filtered under suction and washed with dichloromethane (4 x 100 ml) and then the solvent was evaporated to give a crude oil. This was dissolved in dichloromethane (300 ml) and washed with water (2 x 150 ml), dried and evaporated to give a white solid. Recrystallisation from petrol/ethyl acetate (7:1) to give a white solid, 1,2:5,6-O-isopropylidene-D-mannitol (175) (60.46 g, 53 %), which showed $\delta$$_H$ (500 MHz, CDCl$_3$), $\delta$$_C$ (125 MHz, CDCl$_3$), ν_max identical to the literature.210

Appendix 29: (E)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-acrylic acid methyl ester (61)183,211

A solution of NaIO$_4$ (40.80 g, 190.75 mmol, 2 mol. equiv.) in water (150 ml) was added dropwise to a stirred solution of 1,2:5,6-O-isopropylidene-D-mannitol (175) (25.00 g, 95.38 mmol) in 5 % NaHCO$_3$ (200 ml) at 0 °C and stirring continued for 1hr at RT. The mixture was cooled to 0 °C and (diisopropoxy phosphoryl)-acetic
acid methyl ester (50.00 g, 210.00 mmol, 2.2 mol. equiv.) was added with stirring followed by a 6M solution of aq. K₂CO₃ (65 ml) at 0-4 °C. The reaction was allowed to reach RT and stirred for 18 hrs; the mixture was then extracted with dichloromethane (3 x 300 ml). The combined organic layers were dried and the solvent evaporated to give a crude oil, which was purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a colourless oil, (E)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-acrylic acid methyl ester (61) (9.71 g, 55 %), which showed δₜ₅ (500 MHz, CDCl₃), δₘ (125 MHz, CDCl₃), ν max identical to the literature, [α]²² = + 41.7 (CHCl₃, 1.540 μmol); lit. value [α]²⁴ = + 40.4 (c 1.09, CHCl₃)¹⁸³,²¹¹

Appendix 30: (R)-3-((S)-2,2-Dimethyl-[1,3]dioxolan-4-yl)butyric acid methyl ester (62)¹⁸³,²¹¹

Methyl lithium (61.10 ml, 102.15 mmol, 1.5 M in diethyl ether) was added to a stirred solution of (E)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-acrylic acid methyl ester (61) (9.5 g, 51.08 mmol) in dry ether (200 ml) at -78 °C under nitrogen. The reaction mixture was stirred at RT for 2.5 hrs, then allowed to reach -60 °C, followed by addition of water (10 ml). After 5 mins, sat. aq. ammonium chloride (30 ml) was added, whereupon the temperature rose to -40 °C. The mixture was allowed to reach 0 °C and was then quenched with water (100 ml). The aqueous layer was extracted with ethyl acetate (3 x 50 ml), and the organic phase washed with sat. aq sodium chloride (2 x 100 ml). The combined organic layers were dried and evaporated to give a crude yellow oil. Chromatography on silica gel eluting with petrol/ethyl acetate (10:1) (TLC visualised with potassium permanganate) gave (R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)butyric acid methyl ester (62) (5.95 g, 58 %) as a
colourless oil, which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature, $[\alpha]^D_{21} = +8.12$ (CHCl$_3$, 1.344 µmol); lit. value $[\alpha]^D_{24} = +8.6$ (c 1.05, CHCl$_3$).183,211

Appendix 31: (R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)butan-1-ol (177)183

(R)-3-((S)-2,2-Dimethyl-[1,3]dioxolan-4-yl)butyric acid methyl ester (62) (3.12 g, 15.44 mmol) in THF (20 ml) was added dropwise over 15 mins to a suspension of lithium aluminium hydride (0.82 g, 21.61 mmol, 1.4 mol. equiv.) in THF (100 ml) under nitrogen at -20 °C. The reaction mixture was refluxed for 2 hrs, when TLC showed no starting material was left. The mixture was quenched carefully with freshly prepared sat. aq. sodium sulfate (20 ml) at -20 °C until a white precipitate was formed, followed by addition of magnesium sulfate (5 g). The mixture was stirred vigorously for 1 hr then filtered over a celite pad and washed well with THF (2 x 100 ml). The combined organic layers were evaporated to give a residue. Chromatography on silica gel eluting with petrol/ethyl acetate (5:2) gave (R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)butan-1-ol (177) (1.97 g, 73 %) as a colourless oil, which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν_{max} identical to the literature, $[\alpha]^D_{21} = +19.38$ (CHCl$_3$, 1.223 µmol); lit. value $[\alpha]^D_{24} = +19.2$ (c 1.12, CHCl$_3$).183

Appendix 32: 10-Bromodecan-1-ol (180)183

Br(CH$_2$)$_{10}$OH
1,10-Decanediol (179) (25.00 g, 143 mmol) was dissolved in toluene (100 ml) and aq. hydrobromic acid (30 ml, 552.4 mmol, d = 1.49, 44.7 g) was added and the mixture was refluxed for 18 hrs. When TLC showed no starting material was left, the mixture was extracted with water (100 ml) and sat. aq. sodium hydrogen carbonate (3 x 50 ml). The organic extract was dried and the toluene removed with flash distillation at atmospheric pressure. The crude product was purified via column chromatography eluting with petrol/ether (20:1), then petrol/ether (1:1) to give a colourless oil, 10-bromodecan-1-ol (180) (30.79 g, 90 %), which showed δH (500 MHz, CDCl₃), δC (125 MHz, CDCl₃), νmax identical to the literature.¹⁸³

Appendix 33: (R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)butanal (178)¹⁸²

(R)-3-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)butanol-1-ol (177) (0.97 g, 5.57 mmol) in dichloromethane (10 ml) was added to a stirred suspension of pyridinium chlorochromate (3.00 g, 13.92 mmol, 2.5 mol. equiv.) in dichloromethane (40 ml) at RT. The mixture was stirred for 2 hrs, when TLC analysis indicated completion of the reaction. The mixture was poured into ethyl acetate (50 ml) then filtered through a pad of silica gel and washed with ethyl acetate (50 ml) and the filtrate evaporated. The crude product was purified via column chromatography eluting with petrol/ethyl acetate (2:1) to give a colourless oil, (R)-3-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)butanal (178) (0.74 g, 77 %), which showed δH (500 MHz, CDCl₃), δC (125 MHz, CDCl₃), νmax identical to the literature, [α]¹⁹D = +8.51 (CHCl₃, 1.047 μmol); lit. value [α]²D = +8.27 (c 1.44, CHCl₃).
Appendix 34: (2R,3R)-Methyl 5-(benzyloxy)-3-(tert-butyldimethylsilyloxy)-2-(2-oxoethyl)pentanoate (196)183,202

\[
\text{OSiMe}_2\text{Bu O} \\
\text{BnO} \quad \text{K} \quad \text{Me} \\
\text{O} \\
\text{Me}
\]

2,6-Lutidine (1.19 ml, 1.09 g, 10.19 mmol, 2 mol. equiv.), OsO\textsubscript{4} 2.5 % in 2-methyl-2-propanol (1.28 ml, 0.1019 mmol, 0.02 mol. equiv.) and Na\textsubscript{104} (4.36 g, 20.38 mmol, 4 mol. equiv.) were added to a stirred solution of methyl 2-((R)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)propyl)pent-4-enoate (195) (2.00 g, 5.09 mmol) in 1,4-dioxane/water (3:1, 80 ml) at RT. The mixture was stirred for 2 hrs at 25 °C, when TLC showed no starting material was left. Water (200 ml) and dichloromethane (200 ml) were added and the organic layer extracted. The aqueous layer was re-extracted with dichloromethane (3 x 50 ml) and the combined organic layers were washed with brine (200 ml), dried and the solvent evaporated. The product was purified via column chromatography eluting with petrol/ethyl acetate (2:1) to give a colourless oil, (2R,3R)-methyl 5-(benzyloxy)-3-(tert-butyldimethylsilyloxy)-2-(2-oxoethyl)pentanoate (196) (1.92 g, 96 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature, [\textalpha]_{22}^{26} = -18.75 (CHCl\textsubscript{3}, 1.05 μmol); lit. value [\textalpha]_{26}^{26} = -18.4 (c 0.97, CHCl\textsubscript{3}).183

Appendix 35: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-hydroxypropyl tetracosanoate (199)183

\[
\text{OSiMe}_2\text{Bu O} \\
\text{O} \\
\text{Me}
\]

2,6-Lutidine (1.19 ml, 1.09 g, 10.19 mmol, 2 mol. equiv.), OsO\textsubscript{4} 2.5 % in 2-methyl-2-propanol (1.28 ml, 0.1019 mmol, 0.02 mol. equiv.) and Na\textsubscript{104} (4.36 g, 20.38 mmol, 4 mol. equiv.) were added to a stirred solution of methyl 2-((R)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)propyl)pent-4-enoate (195) (2.00 g, 5.09 mmol) in 1,4-dioxane/water (3:1, 80 ml) at RT. The mixture was stirred for 2 hrs at 25 °C, when TLC showed no starting material was left. Water (200 ml) and dichloromethane (200 ml) were added and the organic layer extracted. The aqueous layer was re-extracted with dichloromethane (3 x 50 ml) and the combined organic layers were washed with brine (200 ml), dried and the solvent evaporated. The product was purified via column chromatography eluting with petrol/ethyl acetate (2:1) to give a colourless oil, (2R,3R)-methyl 5-(benzyloxy)-3-(tert-butyldimethylsilyloxy)-2-(2-oxoethyl)pentanoate (196) (1.92 g, 96 %), which showed δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}), δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}), ν\textsubscript{max} identical to the literature, [\textalpha]_{22}^{26} = -18.75 (CHCl\textsubscript{3}, 1.05 μmol); lit. value [\textalpha]_{26}^{26} = -18.4 (c 0.97, CHCl\textsubscript{3}).183

Appendix 35: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-hydroxypropyl tetracosanoate (199)183
Lithium bis(trimethylsilyl)amide (6.9 ml, 7.30 mmol, 1.06 M) was added dropwise to a stirred solution of (2R,3R)-methyl 5-(benzyloxy)-3-(tert-butyldimethylsilyloxy)-2-(2-oxoethyl)pentanoate (196) (1.92 g, 4.87 mmol) and 5-(eicosylsulfonyl)-1-phenyl-1H-tetrazole (197) (2.86 g, 5.84 mmol, 1.2 mol. equiv.) in dry THF (75 ml) at -15 °C. The mixture was stirred for 18 hrs at RT, when TLC analysis indicated completion of the reaction. Sat. aq. ammonium chloride (50 ml) and petrol/ethyl acetate (1:1, 50 ml) were added. The aqueous layer was re-extracted with petrol/ethyl acetate (1:1, 2 x 50 ml) and the combined organic extracts were dried and evaporated to give an oil. The crude product was purified via column chromatography eluting with petrol/ethyl acetate (20:1) to give a colourless oil, (E/Z)-methyl 2-((R)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)propyl)tetracos-4-enoate (198) (2.03 g, 63 %). Palladium on charcoal (10 %, 0.5 g) was added to a stirred solution of (E/Z)-methyl 2-((R)-3-(benzyloxy)-1-(tert-butyldimethylsilyloxy)propyl)tetracos-4-enoate (198) (2.03 g, 3.08 mmol) in ethyl acetate (50 ml). The mixture was stirred at atmospheric pressure and when hydrogen absorption was complete, the mixture was filtered through a pad of celite and washed with ethyl acetate (50 ml). The filtrate was evaporated to give a white solid, methyl 2-((1R,2R,19R)-1-(tert-butyldimethylsilyloxy)-19-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)icosyl)tetracosanoate (199) (1.41 g, 80 %), which showed δH (500 MHz, CDCl3), δC (125 MHz, CDCl3), νmax identical to the literature, [α]22 D = -8.45 (CHCl3, 1.478 μmol); lit. value [α]24 D = -8.3 (c 0.4, C6H6).183

Appendix 36: Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-oxopropyl)tetracosanoate (200)183

Methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-hydroxypropyl)tetracosanoate (199) (0.60 g, 1.05 mmol) in dichloromethane (10 ml) was added to a stirred suspension of pyridinium chlorochromate (0.57 g, 2.63 mmol, 2.5 mol. equiv.) in
dichloromethane (40 ml). The resultant mixture was stirred at RT for 2 hrs and when TLC analysis indicated completion of the reaction, the mixture was diluted with ethyl acetate (25 ml) and then filtered on a bed of silica gel. The filtrate was evaporated and the crude product purified via column chromatography eluting with petrol/ethyl acetate (10:1) to give a white solid, methyl 2-((1R,2R)-1-(tert-butyldimethylsilyloxy)-3-oxopropyl)tetrasanoate (200) (0.57 g, 96 %), which showed δ_H (500 MHz, CDCl$_3$), δ_C (125 MHz, CDCl$_3$), ν max identical to the literature, $[\alpha]^{21}_D = -5.04$ (CHCl$_3$, 1.234 µmol); lit. value $[\alpha]^{24}_D = -5.0$ (c 1.23, CHCl$_3$).183

Appendix 37: 2,4,6-Triisopropyl-benzenesulfonyl hydrazide194

2,4,6-Triisopropyl-benzenesulfonyl chloride (30.0 g, 99.05 mmol) was dissolved in THF (75 ml) and cooled to -10 °C. Hydrazine hydrate (9.9 g, 198.1 mmol) was slowly added, whilst maintaining the solution in the temperature range of -4 °C and -10 °C. The mixture was kept in the temperature range for a further 2 hrs. Water (3 ml) was added and the solid dissolved. The mixture was separated into two phases and the organic extract was washed with brine (2 x 20 ml). The organic phase was dried at 0 °C for 30 mins, filtered and washed with ether. The solvent was evaporated at 10 °C to a white solid, 2,4,6-triisopropyl-benzenesulfonyl hydrazide (26.85 g, 91 %), which was stored in the freezer under nitrogen.
Appendix 38: Di-potassium azodicarboxylate

Azodicarbonamide (7.5 g, 64 mmol) was slowly added in small portions to a vigorously stirred solution of potassium hydroxide (15 g, 260 mmol) in distilled water (15 ml) at 0 °C on a salted ice-water bath, maintaining the temperature below 5 °C. The resultant bright yellow solution was stirred at 0-5 °C for 45 mins, during which a bright yellow precipitate formed. The precipitate was filtered on a sintered funnel and washed with ice-cold methanol (60 ml). The yellow precipitate was dissolved in water (40 ml) and then filtered through into pre-cooled IMS (60 ml, -20 °C) to give a yellow precipitate. The precipitate was then filtered again through a sinter funnel and washed with cold methanol (50 ml, -20 °C), followed by cold petrol (50 ml, -20 °C) and the solid dried under vacuum. The solid was then transferred to a pre-cooled round bottomed flask under nitrogen. The flask was then stored in the freezer.