eBangor

A high-yield vacuum-evaporation-based R2R-compatible fabrication route for organic electronic circuits

Patchett, E.F. and Williams, A. and Ding, Z. and Abbas, G. and Assender, H.E. and Morrison, J.J. and Yeates, S.G. and Taylor, D.M. (2014) A high-yield vacuum-evaporation-based R2R-compatible fabrication route for organic electronic circuits. Organic Electronics, 15 (7). pp. 1493-1502. DOI: 10.1016/j.orgel.2014.03.043

[img]
Preview
Text
30628.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Advances are described in a vacuum-evaporation-based approach for the roll-to-roll (R2R) production of organic thin film transistors (TFTs) and circuits. Results from 90-transistor arrays formed directly onto a plasma-polymerised diacrylate gate dielectric are compared with those formed on polystyrene-buffered diacrylate. The latter approach resulted in stable, reproducible transistors with yields in excess of 90%. The resulting TFTs had low turn-on voltage, on�off ratios �106 and mobility �1 cm2/V s in the linear regime, as expected for dinaphtho[2,3-b:2�,3�-f] thieno[3,2-b]thiophene the air stable small molecule used as the active semiconductor. We show that when device design is constrained by the generally poor registration ability of R2R processes, parasitic source�drain currents can lead to a >50% increase in the mobility extracted from the resulting TFTs, the increases being especially marked in low channel width devices. Batches of 27 saturated-load inverters were fabricated with 100% yield and their behaviour successfully reproduced using TFT parameters extracted with Silvaco�s UOTFT Model. 5- and 7-stage ring oscillator (RO) outputs ranged from �120 Hz to >2 kHz with rail voltages, VDD, increasing from �15 V to �90 V. From simulations an order of magnitude increase in frequency could be expected by reducing parasitic gate capacitances. During 8 h of continuous operation at VDD = �60 V, the frequency of a 7-stage RO remained almost constant at �1.4 kHz albeit that the output signal amplitude decreased from �22 V to �10 V. Over the next 30 days of intermittent operation further degradation in performance occurred although an unused RO showed no deterioration over the same period.

Item Type: Article
Subjects: Research Publications
Departments: College of Physical and Applied Sciences > School of Electronic Engineering
Date Deposited: 09 Dec 2014 16:28
Last Modified: 23 Sep 2015 02:58
ISSN: 1566-1199
URI: http://e.bangor.ac.uk/id/eprint/257
Identification Number: DOI: 10.1016/j.orgel.2014.03.043
Publisher: Elsevier
Administer Item Administer Item

eBangor is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.