eBangor

The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica

Papadimitriou1, S. and Kennedy, H. and Norman, L. and Kennedy, D.P. and Dieckmann, G.S. and Thomas, D.N. (2012) The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica. Journal of Geophysical Research: Oceans, 117 ((C8)). DOI: 10.1029/2012JC008058

Full-text not available from this repository..

Abstract

A large-scale geographical study of the ice pack in the seasonal ice zone of the Weddell Sea, Antarctica, took place from September to October 2006. Sea ice brines with a salinity greater than 58 and temperature lower than �3.6°C were sampled from 22 ice stations. The brines had large deficits in total alkalinity and in the concentrations of the major dissolved macronutrients (total dissolved inorganic carbon, nitrate, and soluble reactive phosphorus) relative to their concentrations in the surface oceanic water and conservative behavior during seawater freezing. The concentration deficits were related to the dissolved inorganic carbon-consuming processes of photosynthesis, CaCO3 precipitation, and CO2 degassing. The largest concentration deficits in total dissolved inorganic carbon were found to be associated with CaCO3 precipitation and CO2 degassing, because the magnitude of the photosynthesis-induced concentration deficit in total dissolved inorganic carbon is controlled by the size of the inorganic nutrient pool, which can be limited in sea ice by its openness to exchange with the surrounding oceanic water.

Item Type: Article
Subjects: Research Publications
Departments: College of Natural Sciences > School of Ocean Sciences
Date Deposited: 09 Dec 2014 16:51
Last Modified: 23 Sep 2015 03:12
URI: http://e.bangor.ac.uk/id/eprint/1246
Identification Number: DOI: 10.1029/2012JC008058
Administer Item Administer Item

eBangor is powered by EPrints 3 which is developed by the School of Electronics and Computer Science at the University of Southampton. More information and software credits.